These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 33368995)

  • 1. A Highly Ordered Quantum Dot Supramolecular Assembly Exhibiting Photoinduced Emission Enhancement.
    Yamauchi M; Yamamoto S; Masuo S
    Angew Chem Int Ed Engl; 2021 Mar; 60(12):6473-6479. PubMed ID: 33368995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. One-Dimensionally Arranged Quantum-Dot Superstructures Guided by a Supramolecular Polymer Template.
    Yamauchi M; Nakatsukasa K; Kubo N; Yamada H; Masuo S
    Angew Chem Int Ed Engl; 2024 Jan; 63(1):e202314329. PubMed ID: 37985221
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Colloidal Quantum Dot Arrangement Assisted by Perylene Bisimide Self-Assembly.
    Yamauchi M; Masuo S
    Chemistry; 2019 Jan; 25(1):167-172. PubMed ID: 30398692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-Assembly of Semiconductor Quantum Dots using Organic Templates.
    Yamauchi M; Masuo S
    Chemistry; 2020 Jun; 26(32):7176-7184. PubMed ID: 32101343
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of Macroscopic Motion of Oleate Helical Assemblies: Cooperative Deprotonation of Carboxyl Groups Triggered by Photoisomerization of Azobenzene Derivatives.
    Kageyama Y; Ikegami T; Kurokome Y; Takeda S
    Chemistry; 2016 Jun; 22(25):8669-75. PubMed ID: 27165777
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large exciton binding energy, high photoluminescence quantum yield and improved photostability of organo-metal halide hybrid perovskite quantum dots grown on a mesoporous titanium dioxide template.
    Parveen S; Paul KK; Das R; Giri PK
    J Colloid Interface Sci; 2019 Mar; 539():619-633. PubMed ID: 30612025
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correlation between photoluminescence and morphology for single layer self-assembled InGaAs/GaAs quantum dots.
    Liang B; Yuan Q; Su L; Wang Y; Guo Y; Wang S; Fu G; Marega E; Mazur YI; Ware ME; Salamo G
    Opt Express; 2018 Sep; 26(18):23107-23118. PubMed ID: 30184966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multimodal optical studies of single and clustered colloidal quantum dots for the long-term optical property evaluation of quantum dot-based molecular imaging phantoms.
    Kang H; Clarke ML; Lacerda SH; Karim A; Pease LF; Hwang J
    Biomed Opt Express; 2012 Jun; 3(6):1312-25. PubMed ID: 22741078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of Direct Solvent-Quantum Dot Interaction on the Optical Properties of Colloidal Monolayer WS
    Jin H; Baek B; Kim D; Wu F; Batteas JD; Cheon J; Son DH
    Nano Lett; 2017 Dec; 17(12):7471-7477. PubMed ID: 29076338
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-Assembled Luminescent Quantum Dots To Generate Full-Color and White Circularly Polarized Light.
    Huo S; Duan P; Jiao T; Peng Q; Liu M
    Angew Chem Int Ed Engl; 2017 Sep; 56(40):12174-12178. PubMed ID: 28759134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stability of Quantum Dots, Quantum Dot Films, and Quantum Dot Light-Emitting Diodes for Display Applications.
    Moon H; Lee C; Lee W; Kim J; Chae H
    Adv Mater; 2019 Aug; 31(34):e1804294. PubMed ID: 30650209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quenching of photoluminescence in conjugates of quantum dots and single-walled carbon nanotube.
    Biju V; Itoh T; Baba Y; Ishikawa M
    J Phys Chem B; 2006 Dec; 110(51):26068-74. PubMed ID: 17181259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth and characterization of self-assembled InAs/InP quantum dot structures.
    Barik S; Tan HH; Wong-Leung J; Jagadish C
    J Nanosci Nanotechnol; 2010 Mar; 10(3):1525-36. PubMed ID: 20355541
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stimuli-Responsive Supramolecular Polymers from Amphiphilic Phosphodiester-Linked Azobenzene Trimers.
    Vybornyi O; Liu SX; Häner R
    Angew Chem Int Ed Engl; 2021 Dec; 60(49):25872-25877. PubMed ID: 34529324
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of the polymer matrix on the photoluminescence of embedded CdSe quantum dots.
    Tselikov GI; Timoshenko VY; Golovan LA; Plenge J; Shatalova AM; Shandryuk GA; Kutergina IY; Merekalov AS; Rühl E; Talroze RV
    Chemphyschem; 2015 Apr; 16(5):1071-8. PubMed ID: 25728757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlling the structures of organic semiconductor-quantum dot nanocomposites through ligand shell chemistry.
    Toolan DTW; Weir MP; Kilbride RC; Willmott JR; King SM; Xiao J; Greenham NC; Friend RH; Rao A; Jones RAL; Ryan AJ
    Soft Matter; 2020 Sep; 16(34):7970-7981. PubMed ID: 32766663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing optical characteristics of InAs/InGaAsSb quantum dot structures with long-excited state emission at 1.31 μm.
    Liu WS; Tseng HL; Kuo PC
    Opt Express; 2014 Aug; 22(16):18860-9. PubMed ID: 25320972
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Near-Infrared Quantum Dot Emission Enhanced by Stabilized Self-Assembled J-Aggregate Antennas.
    Freyria FS; Cordero JM; Caram JR; Doria S; Dodin A; Chen Y; Willard AP; Bawendi MG
    Nano Lett; 2017 Dec; 17(12):7665-7674. PubMed ID: 29148805
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical properties demonstrating strong coupling of compactly arranged Ge quantum dots.
    Zhou T; Zhong Z
    Opt Express; 2019 Aug; 27(16):22173-22180. PubMed ID: 31510512
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Order-of-Magnitude, Broadband-Enhanced Light Emission from Quantum Dots Assembled in Multiscale Phase-Separated Block Copolymers.
    Kim GY; Kim S; Choi J; Kim M; Lim H; Nam TW; Choi W; Cho EN; Han HJ; Lee C; Kim JC; Jeong HY; Choi SY; Jang MS; Jeon DY; Jung YS
    Nano Lett; 2019 Oct; 19(10):6827-6838. PubMed ID: 31476862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.