These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 33368995)

  • 41. Photoluminescence Intermittency and Photo-Bleaching of Single Colloidal Quantum Dot.
    Qin H; Meng R; Wang N; Peng X
    Adv Mater; 2017 Apr; 29(14):. PubMed ID: 28256776
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Subsecond luminescence intensity fluctuations of single CdSe quantum dots.
    Biju V; Makita Y; Nagase T; Yamaoka Y; Yokoyama H; Baba Y; Ishikawa M
    J Phys Chem B; 2005 Aug; 109(30):14350-5. PubMed ID: 16852805
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Emission properties of colloidal quantum dots on polyelectrolyte multilayers.
    Komarala VK; Rakovich YP; Bradley AL; Byrne SJ; Corr SA; Gun'ko YK
    Nanotechnology; 2006 Aug; 17(16):4117-22. PubMed ID: 21727547
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Photoluminescence Quenching in Self-Assembled CsPbBr
    Muduli S; Pandey P; Devatha G; Babar R; M T; Kothari DC; Kabir M; Pillai PP; Ogale S
    Angew Chem Int Ed Engl; 2018 Jun; 57(26):7682-7686. PubMed ID: 29693308
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Sizing Up Excitons in Core-Shell Quantum Dots via Shell-Dependent Photoluminescence Blinking.
    Fisher AAE; Osborne MA
    ACS Nano; 2017 Aug; 11(8):7829-7840. PubMed ID: 28679040
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Evidence of Quantum Resonance in Periodically-Ordered Three-Dimensional Superlattice of CdTe Quantum Dots.
    Kim D; Tomita S; Ohshiro K; Watanabe T; Sakai T; Chang IY; Hyeon-Deuk K
    Nano Lett; 2015 Jul; 15(7):4343-7. PubMed ID: 26091186
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Controlling Charge Transfer from Quantum Dots to Polyelectrolyte Layers Extends Prospective Applications of Magneto-Optical Microcapsules.
    Nifontova G; Krivenkov V; Zvaigzne M; Samokhvalov P; Efimov AE; Agapova OI; Agapov II; Korostylev E; Zarubin S; Karaulov A; Nabiev I; Sukhanova A
    ACS Appl Mater Interfaces; 2020 Aug; 12(32):35882-35894. PubMed ID: 32663390
    [TBL] [Abstract][Full Text] [Related]  

  • 48. On the design of composite protein-quantum dot biomaterials via self-assembly.
    Majithia R; Patterson J; Bondos SE; Meissner KE
    Biomacromolecules; 2011 Oct; 12(10):3629-37. PubMed ID: 21892824
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Photoinduced fluorescence intensity oscillation in a reaction-diffusion cell containing a colloidal quantum dot dispersion.
    Komoto A; Maenosono S
    J Chem Phys; 2006 Sep; 125(11):114705. PubMed ID: 16999499
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effect of energy transfer on the optical properties of surface-passivated perovskite films with CdSe/ZnS quantum dots.
    Cho IW; Ryu MY
    Sci Rep; 2019 Dec; 9(1):18433. PubMed ID: 31804551
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Supramolecular Gel-Templated In Situ Synthesis and Assembly of CdS Quantum Dots Gels.
    Zhu L; He J; Wang X; Li D; He H; Ren L; Jiang B; Wang Y; Teng C; Xue G; Tao H
    Nanoscale Res Lett; 2017 Dec; 12(1):30. PubMed ID: 28084613
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Quantum-dot-induced self-assembly of cricoid protein for light harvesting.
    Miao L; Han J; Zhang H; Zhao L; Si C; Zhang X; Hou C; Luo Q; Xu J; Liu J
    ACS Nano; 2014 Apr; 8(4):3743-51. PubMed ID: 24601558
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Enhancing Loading Amount and Performance of Quantum-Dot-Sensitized Solar Cells Based on Direct Adsorption of Quantum Dots from Bicomponent Solvents.
    Wang W; Rao H; Fang W; Zhang H; Zhou M; Pan Z; Zhong X
    J Phys Chem Lett; 2019 Jan; 10(2):229-237. PubMed ID: 30600681
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Charge generation in PbS quantum dot solar cells characterized by temperature-dependent steady-state photoluminescence.
    Gao J; Zhang J; van de Lagemaat J; Johnson JC; Beard MC
    ACS Nano; 2014 Dec; 8(12):12814-25. PubMed ID: 25485555
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Surface plasmon-quantum dot coupling from arrays of nanoholes.
    Brolo AG; Kwok SC; Cooper MD; Moffitt MG; Wang CW; Gordon R; Riordon J; Kavanagh KL
    J Phys Chem B; 2006 Apr; 110(16):8307-13. PubMed ID: 16623513
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Colloidal Zn(Te,Se)/ZnS Core/Shell Quantum Dots Exhibiting Narrow-Band and Green Photoluminescence.
    Asano H; Tsukuda S; Kita M; Fujimoto S; Omata T
    ACS Omega; 2018 Jun; 3(6):6703-6709. PubMed ID: 31458844
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Argon-plasma-induced InAs/InGaAs/InP quantum dot intermixing.
    Yin Z; Tang X; Lee CW; Zhao J; Deny S; Chin MK
    Nanotechnology; 2006 Sep; 17(18):4664-7. PubMed ID: 21727594
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Quantum dot-layer-encapsulated and phenyl-functionalized silica spheres for highly luminous, colour rendering, and stable white light-emitting diodes.
    Yoo H; Jang HS; Lee K; Woo K
    Nanoscale; 2015 Aug; 7(30):12860-7. PubMed ID: 26156214
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Melamine-DNA encoded periodicity of quantum dot arrays.
    Singh S; Kumari R; Chakraborty A; Hussain S; Singh MK; Das P
    J Colloid Interface Sci; 2016 Jan; 461():45-49. PubMed ID: 26397908
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Novel synthesis of Mn: ZnSe@ZnS core-shell quantum dots based on photoinduced fluorescence enhancement.
    Chen Q; Huang Z; Wang Q; Hu Y; Tang H; Wen R; Wang W
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Mar; 248():119099. PubMed ID: 33214102
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.