These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
428 related articles for article (PubMed ID: 33369015)
21. Maintenance and Expression of Mammalian Mitochondrial DNA. Gustafsson CM; Falkenberg M; Larsson NG Annu Rev Biochem; 2016 Jun; 85():133-60. PubMed ID: 27023847 [TBL] [Abstract][Full Text] [Related]
22. Analysis of the assembly profiles for mitochondrial- and nuclear-DNA-encoded subunits into complex I. Lazarou M; McKenzie M; Ohtake A; Thorburn DR; Ryan MT Mol Cell Biol; 2007 Jun; 27(12):4228-37. PubMed ID: 17438127 [TBL] [Abstract][Full Text] [Related]
23. Mitochondrial DNA: Unraveling the "other" genome. Heuer B J Am Assoc Nurse Pract; 2021 Sep; 33(9):673-675. PubMed ID: 34491238 [TBL] [Abstract][Full Text] [Related]
24. Gene expression patterns of oxidative phosphorylation complex I subunits are organized in clusters. Garbian Y; Ovadia O; Dadon S; Mishmar D PLoS One; 2010 Apr; 5(4):e9985. PubMed ID: 20376309 [TBL] [Abstract][Full Text] [Related]
25. Metazoan OXPHOS gene families: evolutionary forces at the level of mitochondrial and nuclear genomes. Saccone C; Lanave C; De Grassi A Biochim Biophys Acta; 2006; 1757(9-10):1171-8. PubMed ID: 16781661 [TBL] [Abstract][Full Text] [Related]
26. Mitochondrial-nuclear co-evolution and its effects on OXPHOS activity and regulation. Bar-Yaacov D; Blumberg A; Mishmar D Biochim Biophys Acta; 2012; 1819(9-10):1107-11. PubMed ID: 22044624 [TBL] [Abstract][Full Text] [Related]
27. Identification and structural characterization of nucleus-encoded transfer RNAs imported into wheat mitochondria. Glover KE; Spencer DF; Gray MW J Biol Chem; 2001 Jan; 276(1):639-48. PubMed ID: 11027690 [TBL] [Abstract][Full Text] [Related]
28. Mitochondrial-nuclear epistasis contributes to phenotypic variation and coadaptation in natural isolates of Saccharomyces cerevisiae. Paliwal S; Fiumera AC; Fiumera HL Genetics; 2014 Nov; 198(3):1251-65. PubMed ID: 25164882 [TBL] [Abstract][Full Text] [Related]
29. Cytochrome c oxidase: evolution of control via nuclear subunit addition. Pierron D; Wildman DE; Hüttemann M; Markondapatnaikuni GC; Aras S; Grossman LI Biochim Biophys Acta; 2012 Apr; 1817(4):590-7. PubMed ID: 21802404 [TBL] [Abstract][Full Text] [Related]
30. Mitochondrial DNA mutations in disease and aging. Wallace DC Environ Mol Mutagen; 2010 Jun; 51(5):440-50. PubMed ID: 20544884 [TBL] [Abstract][Full Text] [Related]
31. Nuclear-mitochondrial epistasis and drosophila aging: introgression of Drosophila simulans mtDNA modifies longevity in D. melanogaster nuclear backgrounds. Rand DM; Fry A; Sheldahl L Genetics; 2006 Jan; 172(1):329-41. PubMed ID: 16219776 [TBL] [Abstract][Full Text] [Related]
32. Evolution of nuclear- and mitochondrial-encoded subunit interaction in cytochrome c oxidase. Schmidt TR; Wu W; Goodman M; Grossman LI Mol Biol Evol; 2001 Apr; 18(4):563-9. PubMed ID: 11264408 [TBL] [Abstract][Full Text] [Related]
34. Protein-protein interfaces from cytochrome c oxidase I evolve faster than nonbinding surfaces, yet negative selection is the driving force. Aledo JC; Valverde H; Ruíz-Camacho M; Morilla I; López FD Genome Biol Evol; 2014 Oct; 6(11):3064-76. PubMed ID: 25359921 [TBL] [Abstract][Full Text] [Related]
35. Sirt4 Modulates Oxidative Metabolism and Sensitivity to Rapamycin Through Species-Dependent Phenotypes in Sejour R; Sanguino RA; Mikolajczak M; Ahmadi W; Villa-Cuesta E G3 (Bethesda); 2020 May; 10(5):1599-1612. PubMed ID: 32152006 [TBL] [Abstract][Full Text] [Related]
36. Mitochondrial DNA damage as driver of cellular outcomes. Nadalutti CA; Ayala-Peña S; Santos JH Am J Physiol Cell Physiol; 2022 Feb; 322(2):C136-C150. PubMed ID: 34936503 [TBL] [Abstract][Full Text] [Related]
37. Malignancy and NF-κB signalling strengthen coordination between expression of mitochondrial and nuclear-encoded oxidative phosphorylation genes. Perez MF; Sarkies P Genome Biol; 2021 Dec; 22(1):328. PubMed ID: 34857014 [TBL] [Abstract][Full Text] [Related]
38. Implications of human evolution and admixture for mitochondrial replacement therapy. Rishishwar L; Jordan IK BMC Genomics; 2017 Feb; 18(1):140. PubMed ID: 28178941 [TBL] [Abstract][Full Text] [Related]
39. Overview of mitochondrial germline variants and mutations in human disease: Focus on breast cancer (Review). Jiménez-Morales S; Pérez-Amado CJ; Langley E; Hidalgo-Miranda A Int J Oncol; 2018 Sep; 53(3):923-936. PubMed ID: 30015870 [TBL] [Abstract][Full Text] [Related]
40. Does mitochondrial DNA evolution in metazoa drive the origin of new mitochondrial proteins? van Esveld SL; Huynen MA IUBMB Life; 2018 Dec; 70(12):1240-1250. PubMed ID: 30281911 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]