BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 33369118)

  • 1. CRISPR/Cas12a-mediated CHO genome engineering can be effectively integrated at multiple stages of the cell line generation process for bioproduction.
    Schweickert PG; Wang N; Sandefur SL; Lloyd ME; Konieczny SF; Frye CC; Cheng Z
    Biotechnol J; 2021 Apr; 16(4):e2000308. PubMed ID: 33369118
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRISPR Technologies in Chinese Hamster Ovary Cell Line Engineering.
    Glinšek K; Bozovičar K; Bratkovič T
    Int J Mol Sci; 2023 May; 24(9):. PubMed ID: 37175850
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expanding the CRISPR toolbox for Chinese hamster ovary cells with comprehensive tools for Mad7 genome editing.
    Rojek JB; Basavaraju Y; Nallapareddy S; Bulté DB; Baumgartner R; Schoffelen S; Grav LM; Goletz S; Pedersen LE
    Biotechnol Bioeng; 2023 Jun; 120(6):1478-1491. PubMed ID: 36864663
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR/Cas9-mediated genome engineering of CHO cell factories: Application and perspectives.
    Lee JS; Grav LM; Lewis NE; Faustrup Kildegaard H
    Biotechnol J; 2015 Jul; 10(7):979-94. PubMed ID: 26058577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced Genome Editing Tools For Multi-Gene Deletion Knock-Out Approaches Using Paired CRISPR sgRNAs in CHO Cells.
    Schmieder V; Bydlinski N; Strasser R; Baumann M; Kildegaard HF; Jadhav V; Borth N
    Biotechnol J; 2018 Mar; 13(3):e1700211. PubMed ID: 28976642
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High throughput, efficacious gene editing & genome surveillance in Chinese hamster ovary cells.
    Huhn SC; Ou Y; Kumar A; Liu R; Du Z
    PLoS One; 2019; 14(12):e0218653. PubMed ID: 31856197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR/Cas9-Mediated Knockout of MicroRNA-744 Improves Antibody Titer of CHO Production Cell Lines.
    Raab N; Mathias S; Alt K; Handrick R; Fischer S; Schmieder V; Jadhav V; Borth N; Otte K
    Biotechnol J; 2019 May; 14(5):e1800477. PubMed ID: 30802343
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of the CRISPR/Cas9 Gene Editing Method for Modulating Antibody Fucosylation in CHO Cells.
    Wang Q; Chung CY; Rosenberg JN; Yu G; Betenbaugh MJ
    Methods Mol Biol; 2018; 1850():237-257. PubMed ID: 30242691
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of CRISPR/Cas9 Genome Editing to Improve Recombinant Protein Production in CHO Cells.
    Grav LM; la Cour Karottki KJ; Lee JS; Kildegaard HF
    Methods Mol Biol; 2017; 1603():101-118. PubMed ID: 28493126
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR-Cas12a-Mediated Gene Deletion and Regulation in
    Zhao R; Liu Y; Zhang H; Chai C; Wang J; Jiang W; Gu Y
    ACS Synth Biol; 2019 Oct; 8(10):2270-2279. PubMed ID: 31526005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent advances of Cas12a applications in bacteria.
    Meliawati M; Schilling C; Schmid J
    Appl Microbiol Biotechnol; 2021 Apr; 105(8):2981-2990. PubMed ID: 33754170
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Site-Specific Integration Reporter System That Enables Rapid Evaluation of CRISPR/Cas9-Mediated Genome Editing Strategies in CHO Cells.
    Hamaker NK; Lee KH
    Biotechnol J; 2020 Aug; 15(8):e2000057. PubMed ID: 32500600
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR-Cas12a System for Biosensing and Gene Regulation.
    Shi Y; Fu X; Yin Y; Peng F; Yin X; Ke G; Zhang X
    Chem Asian J; 2021 Apr; 16(8):857-867. PubMed ID: 33638271
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRISPR-Cas12a-Assisted Recombineering in Bacteria.
    Yan MY; Yan HQ; Ren GX; Zhao JP; Guo XP; Sun YC
    Appl Environ Microbiol; 2017 Sep; 83(17):. PubMed ID: 28646112
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR/Cas9 as a Genome Editing Tool for Targeted Gene Integration in CHO Cells.
    Sergeeva D; Camacho-Zaragoza JM; Lee JS; Kildegaard HF
    Methods Mol Biol; 2019; 1961():213-232. PubMed ID: 30912048
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of the CRISPR/Cas9 Gene Editing Method for Modulating Antibody Fucosylation in CHO Cells.
    Wang Q; Aliyu L; Chung CY; Rosenberg JN; Yu G; Betenbaugh MJ
    Methods Mol Biol; 2024; 2810():249-271. PubMed ID: 38926284
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One-step generation of triple knockout CHO cell lines using CRISPR/Cas9 and fluorescent enrichment.
    Grav LM; Lee JS; Gerling S; Kallehauge TB; Hansen AH; Kol S; Lee GM; Pedersen LE; Kildegaard HF
    Biotechnol J; 2015 Sep; 10(9):1446-56. PubMed ID: 25864574
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPR/Cas System: Recent Advances and Future Prospects for Genome Editing.
    Manghwar H; Lindsey K; Zhang X; Jin S
    Trends Plant Sci; 2019 Dec; 24(12):1102-1125. PubMed ID: 31727474
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accelerating genome editing in CHO cells using CRISPR Cas9 and CRISPy, a web-based target finding tool.
    Ronda C; Pedersen LE; Hansen HG; Kallehauge TB; Betenbaugh MJ; Nielsen AT; Kildegaard HF
    Biotechnol Bioeng; 2014 Aug; 111(8):1604-16. PubMed ID: 24827782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR/Cas9 gene editing for the creation of an MGAT1-deficient CHO cell line to control HIV-1 vaccine glycosylation.
    Byrne G; O'Rourke SM; Alexander DL; Yu B; Doran RC; Wright M; Chen Q; Azadi P; Berman PW
    PLoS Biol; 2018 Aug; 16(8):e2005817. PubMed ID: 30157178
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.