BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 33369139)

  • 1. One-pot synthesis of 6-aminohexanoic acid from cyclohexane using mixed-species cultures.
    Bretschneider L; Wegner M; Bühler K; Bühler B; Karande R
    Microb Biotechnol; 2021 May; 14(3):1011-1025. PubMed ID: 33369139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rational Engineering of a Multi-Step Biocatalytic Cascade for the Conversion of Cyclohexane to Polycaprolactone Monomers in Pseudomonas taiwanensis.
    Schäfer L; Bühler K; Karande R; Bühler B
    Biotechnol J; 2020 Nov; 15(11):e2000091. PubMed ID: 32735401
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rational orthologous pathway and biochemical process engineering for adipic acid production using Pseudomonas taiwanensis VLB120.
    Bretschneider L; Heuschkel I; Bühler K; Karande R; Bühler B
    Metab Eng; 2022 Mar; 70():206-217. PubMed ID: 35085781
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biocatalytic conversion of cycloalkanes to lactones using an in-vivo cascade in Pseudomonas taiwanensis VLB120.
    Karande R; Salamanca D; Schmid A; Buehler K
    Biotechnol Bioeng; 2018 Feb; 115(2):312-320. PubMed ID: 28986995
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous cyclohexane oxidation to cyclohexanol using a novel cytochrome P450 monooxygenase from Acidovorax sp. CHX100 in recombinant P. taiwanensis VLB120 biofilms.
    Karande R; Debor L; Salamanca D; Bogdahn F; Engesser KH; Buehler K; Schmid A
    Biotechnol Bioeng; 2016 Jan; 113(1):52-61. PubMed ID: 26153144
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Maximizing Biocatalytic Cyclohexane Hydroxylation by Modulating Cytochrome P450 Monooxygenase Expression in
    Schäfer L; Karande R; Bühler B
    Front Bioeng Biotechnol; 2020; 8():140. PubMed ID: 32175317
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Introducing an in situ capping strategy in systems biocatalysis to access 6-aminohexanoic acid.
    Sattler JH; Fuchs M; Mutti FG; Grischek B; Engel P; Pfeffer J; Woodley JM; Kroutil W
    Angew Chem Int Ed Engl; 2014 Dec; 53(51):14153-7. PubMed ID: 25366462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 6-Aminohexanoic acid as a chemical chaperone for apolipoprotein(a).
    Wang J; White AL
    J Biol Chem; 1999 Apr; 274(18):12883-9. PubMed ID: 10212277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. One-Pot Biocatalytic Transformation of Adipic Acid to 6-Aminocaproic Acid and 1,6-Hexamethylenediamine Using Carboxylic Acid Reductases and Transaminases.
    Fedorchuk TP; Khusnutdinova AN; Evdokimova E; Flick R; Di Leo R; Stogios P; Savchenko A; Yakunin AF
    J Am Chem Soc; 2020 Jan; 142(2):1038-1048. PubMed ID: 31886667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Light-Dependent and Aeration-Independent Gram-Scale Hydroxylation of Cyclohexane to Cyclohexanol by CYP450 Harboring Synechocystis sp. PCC 6803.
    Hoschek A; Toepel J; Hochkeppel A; Karande R; Bühler B; Schmid A
    Biotechnol J; 2019 Aug; 14(8):e1800724. PubMed ID: 31106963
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cascade Synthesis from Cyclohexane to ϵ-Caprolactone by Visible-Light-Driven Photocatalysis Combined with Whole-Cell Biological Oxidation.
    Li P; Ma Y; Li Y; Zhang X; Wang Y
    Chembiochem; 2020 Jul; 21(13):1852-1855. PubMed ID: 32017323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Light-driven redox biocatalysis on gram-scale in Synechocystis sp. PCC 6803 via an in vivo cascade.
    Tüllinghoff A; Djaya-Mbissam H; Toepel J; Bühler B
    Plant Biotechnol J; 2023 Oct; 21(10):2074-2083. PubMed ID: 37439151
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tolerance and metabolic response of
    Wordofa GG; Kristensen M
    Biotechnol Biofuels; 2018; 11():199. PubMed ID: 30034525
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Streamlined
    Wynands B; Otto M; Runge N; Preckel S; Polen T; Blank LM; Wierckx N
    ACS Synth Biol; 2019 Sep; 8(9):2036-2050. PubMed ID: 31465206
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic engineering of Pseudomonas sp. strain VLB120 as platform biocatalyst for the production of isobutyric acid and other secondary metabolites.
    Lang K; Zierow J; Buehler K; Schmid A
    Microb Cell Fact; 2014 Jan; 13():2. PubMed ID: 24397404
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An enzymatic method for the production of 6-oxohexanoic acid from 6-aminohexanoic acid by an enzyme oxidizing ω-amino compounds from Phialemonium sp. AIU 274.
    Yamada M; Ooe M; Sasaki T; Miyazaki M; Isobe K
    Biosci Biotechnol Biochem; 2017 Dec; 81(12):2407-2410. PubMed ID: 29017398
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A multi-enzyme cascade reaction for the production of 6-hydroxyhexanoic acid.
    Srinivasamurthy VST; Böttcher D; Bornscheuer UT
    Z Naturforsch C J Biosci; 2019 Feb; 74(3-4):71-76. PubMed ID: 30685749
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Data on mixed trophies biofilm for continuous cyclohexane oxidation to cyclohexanol using
    Heuschkel I; Hoschek A; Schmid A; Bühler B; Karande R; Bühler K
    Data Brief; 2019 Aug; 25():104059. PubMed ID: 31211205
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biocatalytic Production of a Nylon 6 Precursor from Caprolactone in Continuous Flow.
    Romero-Fernandez M; Heckmann CM; Paradisi F
    ChemSusChem; 2022 Aug; 15(16):e202200811. PubMed ID: 35671069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A NEW METHOD OF DETERMINATION OF EPSILON AMINOCAPROIC ACID AND AMINOMETHYL CYCLOHEXANE CARBOXYLIC ACID.
    TAKADA Y; TAKADA A; OKAMOTO U
    Keio J Med; 1964 Jun; 13():115-21. PubMed ID: 14185048
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.