BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

31 related articles for article (PubMed ID: 33369289)

  • 1. Efficiency of ultrafiltration/diafiltration in removing organic and elemental process equipment related leachables from biological therapeutics.
    Sun B; Hadidi M; Santiago Nuñez J; Song B; Tumambac GE; Wong K; Kalinowski G; Hathcock JJ
    Biotechnol Prog; 2024; 40(1):e3400. PubMed ID: 37964726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-criteria manufacturability indices for ranking high-concentration monoclonal antibody formulations.
    Yang Y; Velayudhan A; Thornhill NF; Farid SS
    Biotechnol Bioeng; 2017 Sep; 114(9):2043-2056. PubMed ID: 28464235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of ultrafiltration/diafiltration for the processing of antisense oligonucleotides.
    Gronke RS; Ruanjaikaen K; Delavari A; Immel-Brown JP; Penrod JC; Lam Y; Antia FD
    Biotechnol Prog; 2023; 39(4):e3350. PubMed ID: 37186510
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing the impact of sanitization methods for regenerated cellulose ultrafiltration/diafiltration membrane on membrane integrity and protein quality.
    Cong X; Chen W; Wang L; Wan Y
    Biotechnol Prog; 2023; 39(6):e3377. PubMed ID: 37470193
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a high-throughput scale-down model in Ambr® 250 HT for plasmid DNA fermentation processes.
    Fang S; Sinanan DJ; Perez MH; Cruz-Quintero RG; Jadhav SR
    Biotechnol Prog; 2024 Mar; ():e3458. PubMed ID: 38494959
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Co-current filtrate flow in TFF perfusion processes: Decoupling transmembrane pressure from crossflow to improve product sieving.
    Romann P; Giller P; Sibilia A; Herwig C; Zydney AL; Perilleux A; Souquet J; Bielser JM; Villiger TK
    Biotechnol Bioeng; 2024 Feb; 121(2):640-654. PubMed ID: 37965698
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Throughput Process Development for Biopharmaceuticals.
    Shukla AA; Rameez S; Wolfe LS; Oien N
    Adv Biochem Eng Biotechnol; 2018; 165():401-441. PubMed ID: 29134461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of ethanol on continuous inline diafiltration of liposomal drug products.
    Worsham RD; Thomas V; Farid SS
    Biotechnol J; 2023 Nov; 18(11):e2300194. PubMed ID: 37531572
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of platform process development approaches to the manufacturing of Mabcalin™ bispecifics.
    Wachter S; Angevin T; Bubna N; Tan A; Cichy A; Brown D; Wolfe LS; Sappington R; Lilla E; Berry L; Grismer D; Orth C; Blanusa M; Mostafa S; Kaufmann H; Felderer K
    J Biotechnol; 2023 Nov; 377():13-22. PubMed ID: 37820750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predictive modeling of single pass tangential flow filtration for continuous biomanufacturing.
    Fuchs M; Bhawnani R; Sripada SA; Molek J; Ghodbane M
    Biotechnol Prog; 2023; 39(5):e3353. PubMed ID: 37155963
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comprehensive assessment of the applicability of RoboColumn as a chromatography scale-down model for use in biopharmaceutical process validation.
    Chinn M; Doninger K; Al-Khaledy R; Zhang E; Kim H; Werz S; Schelter F
    J Chromatogr A; 2023 Nov; 1710():464391. PubMed ID: 37769427
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An ultra scale-down method to investigate monoclonal antibody processing during tangential flow filtration using ultrafiltration membranes.
    Fernandez-Cerezo L; Rayat ACME; Chatel A; Pollard JM; Lye GJ; Hoare M
    Biotechnol Bioeng; 2019 Mar; 116(3):581-590. PubMed ID: 30411315
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a scalable procedure by a discontinuous crossflow DF/UF to obtain a concentrate of chenopodin from a dead-end centrifugal UF at bench scale.
    Arazo M; Jaque N; Caro N; Abugoch L; Tapia C
    Food Chem; 2020 May; 313():126154. PubMed ID: 31931425
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strategies for high-concentration drug substance manufacturing to facilitate subcutaneous administration: A review.
    Holstein M; Hung J; Feroz H; Ranjan S; Du C; Ghose S; Li ZJ
    Biotechnol Bioeng; 2020 Nov; 117(11):3591-3606. PubMed ID: 32687221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scale-Down Model Development in ambr systems: An Industrial Perspective.
    Sandner V; Pybus LP; McCreath G; Glassey J
    Biotechnol J; 2019 Apr; 14(4):e1700766. PubMed ID: 30350921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Streamlining process characterization efforts using the high throughput ambr® crossflow system for ultrafiltration and diafiltration processing of monoclonal antibodies.
    Fernandez-Cerezo L; Benner SW; Pollard JM
    Biotechnol Prog; 2021 May; 37(3):e3118. PubMed ID: 33369289
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High throughput screening of ultrafiltration and diafiltration processing of monoclonal antibodies via the ambr® crossflow system.
    Fernandez-Cerezo L; Wismer MK; Han I; Pollard JM
    Biotechnol Prog; 2020 Mar; 36(2):e2929. PubMed ID: 31622541
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.