BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 33369328)

  • 1. [Research advance in surface modification of titanium alloys with chitosan].
    Liu JX; An LP; Jia YF; Zhang GR; Zhou JP; Wu D; Zhang MT; Yun XD
    Zhongguo Gu Shang; 2020 Dec; 33(12):1175-8. PubMed ID: 33369328
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface modification techniques of titanium and titanium alloys for biomedical orthopaedics applications: A review.
    Han X; Ma J; Tian A; Wang Y; Li Y; Dong B; Tong X; Ma X
    Colloids Surf B Biointerfaces; 2023 Jul; 227():113339. PubMed ID: 37182380
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Progress in antibacterial coatings of titanium implants surfaces].
    He X; Guo C; Liu X; Wang Y; Liang Z; Lian X; Hu Y; Huang D; Wei Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2024 Feb; 41(1):191-198. PubMed ID: 38403621
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functionalization of 3D-printed titanium alloy orthopedic implants: a literature review.
    Jing Z; Zhang T; Xiu P; Cai H; Wei Q; Fan D; Lin X; Song C; Liu Z
    Biomed Mater; 2020 Aug; 15(5):052003. PubMed ID: 32369792
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study on mechanical behavior of Cu-bearing antibacterial titanium alloy implant.
    Zhang S; Yu Y; Wang H; Ren L; Yang K
    J Mech Behav Biomed Mater; 2022 Jan; 125():104926. PubMed ID: 34736030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antibacterial hyaluronic acid/chitosan multilayers onto smooth and micropatterned titanium surfaces.
    Valverde A; Pérez-Álvarez L; Ruiz-Rubio L; Pacha Olivenza MA; García Blanco MB; Díaz-Fuentes M; Vilas-Vilela JL
    Carbohydr Polym; 2019 Mar; 207():824-833. PubMed ID: 30600071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanometer-scale surface modification of Ti6Al4V alloy for orthopedic applications.
    Xie J; Luan BL
    J Biomed Mater Res A; 2008 Jan; 84(1):63-72. PubMed ID: 17600328
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [RESEARCH PROGRESS OF MAGNESIUM AND MAGNESIUM ALLOYS IMPLANTS IN ORTHOPEDICS].
    Yang J; Xu Y; He X
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2016 Dec; 30(12):1562-1566. PubMed ID: 29786352
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mussel-Inspired Carboxymethyl Chitosan Hydrogel Coating of Titanium Alloy with Antibacterial and Bioactive Properties.
    Ren Y; Qin X; Barbeck M; Hou Y; Xu H; Liu L; Liu C
    Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832302
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antibacterial metals and alloys for potential biomedical implants.
    Zhang E; Zhao X; Hu J; Wang R; Fu S; Qin G
    Bioact Mater; 2021 Aug; 6(8):2569-2612. PubMed ID: 33615045
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Review on titanium and titanium based alloys as biomaterials for orthopaedic applications.
    Kaur M; Singh K
    Mater Sci Eng C Mater Biol Appl; 2019 Sep; 102():844-862. PubMed ID: 31147056
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Zirconium Nitride Coating Reduced Staphylococcus epidermidis Biofilm Formation on Orthopaedic Implant Surfaces: An In Vitro Study.
    Pilz M; Staats K; Tobudic S; Assadian O; Presterl E; Windhager R; Holinka J
    Clin Orthop Relat Res; 2019 Feb; 477(2):461-466. PubMed ID: 30418277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antibacterial investigation of titanium-copper alloys using luminescent Staphylococcus epidermidis in a direct contact test.
    Fowler L; Janson O; Engqvist H; Norgren S; Öhman-Mägi C
    Mater Sci Eng C Mater Biol Appl; 2019 Apr; 97():707-714. PubMed ID: 30678959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Review of titanium surface modification techniques and coatings for antibacterial applications.
    Chouirfa H; Bouloussa H; Migonney V; Falentin-Daudré C
    Acta Biomater; 2019 Jan; 83():37-54. PubMed ID: 30541702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cytotoxicity and antibacterial property of titanium alloy coated with silver nanoparticle-containing polyelectrolyte multilayer.
    Zhang X; Li Z; Yuan X; Cui Z; Bao H; Li X; Liu Y; Yang X
    Mater Sci Eng C Mater Biol Appl; 2013 Jul; 33(5):2816-20. PubMed ID: 23623101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Corrosion resistance and antibacterial activity of zinc-loaded montmorillonite coatings on biodegradable magnesium alloy AZ31.
    Zou YH; Wang J; Cui LY; Zeng RC; Wang QZ; Han QX; Qiu J; Chen XB; Chen DC; Guan SK; Zheng YF
    Acta Biomater; 2019 Oct; 98():196-214. PubMed ID: 31154057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advanced Surface Modification for 3D-Printed Titanium Alloy Implant Interface Functionalization.
    Sheng X; Wang A; Wang Z; Liu H; Wang J; Li C
    Front Bioeng Biotechnol; 2022; 10():850110. PubMed ID: 35299643
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The antibacterial properties and biocompatibility of a Ti-Cu sintered alloy for biomedical application.
    Liu J; Zhang X; Wang H; Li F; Li M; Yang K; Zhang E
    Biomed Mater; 2014 Apr; 9(2):025013. PubMed ID: 24565798
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antibacterial activity and biofilm inhibition by surface modified titanium alloy medical implants following application of silver, titanium dioxide and hydroxyapatite nanocoatings.
    Besinis A; Hadi SD; Le HR; Tredwin C; Handy RD
    Nanotoxicology; 2017 Apr; 11(3):327-338. PubMed ID: 28281851
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spark plasma sintering synthesis of porous nanocrystalline titanium alloys for biomedical applications.
    Nicula R; Lüthen F; Stir M; Nebe B; Burkel E
    Biomol Eng; 2007 Nov; 24(5):564-7. PubMed ID: 17869173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.