These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 33369332)
1. [Experimental measurement and modeling analysis of active and passive mechanical properties of arterial vessel wall]. Feng Y; Wu H; Huo Y Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2020 Dec; 37(6):939-947. PubMed ID: 33369332 [TBL] [Abstract][Full Text] [Related]
2. Passive and Active Triaxial Wall Mechanics in a Two-Layer Model of Porcine Coronary Artery. Lu Y; Wu H; Li J; Gong Y; Ma J; Kassab GS; Huo Y; Tan W; Huo Y Sci Rep; 2017 Oct; 7(1):13911. PubMed ID: 29066847 [TBL] [Abstract][Full Text] [Related]
3. The biaxial active mechanical properties of the porcine primary renal artery. Zhou B; Rachev A; Shazly T J Mech Behav Biomed Mater; 2015 Aug; 48():28-37. PubMed ID: 25913605 [TBL] [Abstract][Full Text] [Related]
4. Three-Dimensional Contractile Mechanics of Artery Accounting for Curl of Axial Strip Sectioned from Vessel Wall. Takamizawa K Cardiovasc Eng Technol; 2019 Dec; 10(4):604-617. PubMed ID: 31625079 [TBL] [Abstract][Full Text] [Related]
5. Two-layer model of coronary artery vasoactivity. Huo Y; Zhao X; Cheng Y; Lu X; Kassab GS J Appl Physiol (1985); 2013 May; 114(10):1451-9. PubMed ID: 23471951 [TBL] [Abstract][Full Text] [Related]
6. Biaxial vasoactivity of porcine coronary artery. Huo Y; Cheng Y; Zhao X; Lu X; Kassab GS Am J Physiol Heart Circ Physiol; 2012 May; 302(10):H2058-63. PubMed ID: 22427520 [TBL] [Abstract][Full Text] [Related]
7. A Combination of Constitutive Damage Model and Artificial Neural Networks to Characterize the Mechanical Properties of the Healthy and Atherosclerotic Human Coronary Arteries. Karimi A; Rahmati SM; Sera T; Kudo S; Navidbakhsh M Artif Organs; 2017 Sep; 41(9):E103-E117. PubMed ID: 28150399 [TBL] [Abstract][Full Text] [Related]
8. Microstructure-based constitutive model of coronary artery with active smooth muscle contraction. Chen H; Kassab GS Sci Rep; 2017 Aug; 7(1):9339. PubMed ID: 28839149 [TBL] [Abstract][Full Text] [Related]
9. The perivascular environment along the vertebral artery governs segment-specific structural and mechanical properties. Zhou B; Alshareef M; Prim D; Collins M; Kempner M; Hartstone-Rose A; Eberth JF; Rachev A; Shazly T Acta Biomater; 2016 Nov; 45():286-295. PubMed ID: 27612958 [TBL] [Abstract][Full Text] [Related]
10. Microstructural quantification of collagen fiber orientations and its integration in constitutive modeling of the porcine carotid artery. Sáez P; García A; Peña E; Gasser TC; Martínez MA Acta Biomater; 2016 Mar; 33():183-93. PubMed ID: 26827780 [TBL] [Abstract][Full Text] [Related]
11. Modeling the effects of muscle contraction on the mechanical response and circumferential stability of coronary arteries. Sanft R; Power A; Nicholson C Math Biosci; 2019 Sep; 315():108223. PubMed ID: 31276682 [TBL] [Abstract][Full Text] [Related]
12. Effects of the three-dimensional residual stresses on the mechanical properties of arterial walls. Zheng X; Ren J J Theor Biol; 2016 Mar; 393():118-26. PubMed ID: 26780646 [TBL] [Abstract][Full Text] [Related]
13. Biaxial elastic material properties of porcine coronary media and adventitia. Pandit A; Lu X; Wang C; Kassab GS Am J Physiol Heart Circ Physiol; 2005 Jun; 288(6):H2581-7. PubMed ID: 15792993 [TBL] [Abstract][Full Text] [Related]
15. Changes in biomechanical properties of the coronary artery wall contribute to maintained contractile responses to endothelin-1 in atherosclerosis. Ooi CY; Sutcliffe MP; Davenport AP; Maguire JJ Life Sci; 2014 Nov; 118(2):424-9. PubMed ID: 24721512 [TBL] [Abstract][Full Text] [Related]
16. Mis-sizing of stent promotes intimal hyperplasia: impact of endothelial shear and intramural stress. Chen HY; Sinha AK; Choy JS; Zheng H; Sturek M; Bigelow B; Bhatt DL; Kassab GS Am J Physiol Heart Circ Physiol; 2011 Dec; 301(6):H2254-63. PubMed ID: 21926337 [TBL] [Abstract][Full Text] [Related]
17. Contribution of collagen, elastin, and smooth muscle to in vivo human brachial artery wall stress and elastic modulus. Bank AJ; Wang H; Holte JE; Mullen K; Shammas R; Kubo SH Circulation; 1996 Dec; 94(12):3263-70. PubMed ID: 8989139 [TBL] [Abstract][Full Text] [Related]
18. Multi-scale finite element analyses for stress and strain evaluations of braid fibril artificial blood vessel and smooth muscle cell. Nakamachi E; Uchida T; Kuramae H; Morita Y Int J Numer Method Biomed Eng; 2014 Aug; 30(8):796-813. PubMed ID: 24599892 [TBL] [Abstract][Full Text] [Related]
19. A multiscale active structural model of the arterial wall accounting for smooth muscle dynamics. Coccarelli A; Edwards DH; Aggarwal A; Nithiarasu P; Parthimos D J R Soc Interface; 2018 Feb; 15(139):. PubMed ID: 29436507 [TBL] [Abstract][Full Text] [Related]
20. Instability in Computational Models of Vascular Smooth Muscle Cell Contraction. Giudici A; Szafron JM; Ramachandra AB; Spronck B Ann Biomed Eng; 2024 Sep; 52(9):2403-2416. PubMed ID: 38949730 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]