These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 33369332)

  • 21. Review of the Techniques Used for Investigating the Role Elastin and Collagen Play in Arterial Wall Mechanics.
    Giudici A; Wilkinson IB; Khir AW
    IEEE Rev Biomed Eng; 2021; 14():256-269. PubMed ID: 32746366
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of stent design and atherosclerotic plaque composition on arterial wall biomechanics.
    Timmins LH; Meyer CA; Moreno MR; Moore JE
    J Endovasc Ther; 2008 Dec; 15(6):643-54. PubMed ID: 19090628
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of myocardial constraint on the passive mechanical behaviors of the coronary vessel wall.
    Liu Y; Zhang W; Kassab GS
    Am J Physiol Heart Circ Physiol; 2008 Jan; 294(1):H514-23. PubMed ID: 17993601
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of mechanical properties of lamellar structure of the aortic wall: Effect of aging.
    Taghizadeh H; Tafazzoli-Shadpour M
    J Mech Behav Biomed Mater; 2017 Jan; 65():20-28. PubMed ID: 27544616
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pulsatile flow of non-Newtonian blood fluid inside stenosed arteries: Investigating the effects of viscoelastic and elastic walls, arteriosclerosis, and polycythemia diseases.
    Nejad AA; Talebi Z; Cheraghali D; Shahbani-Zahiri A; Norouzi M
    Comput Methods Programs Biomed; 2018 Feb; 154():109-122. PubMed ID: 29249336
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structure-based constitutive model can accurately predict planar biaxial properties of aortic wall tissue.
    Polzer S; Gasser TC; Novak K; Man V; Tichy M; Skacel P; Bursa J
    Acta Biomater; 2015 Mar; 14():133-45. PubMed ID: 25458466
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Arterial wall mechanics in conscious dogs. Assessment of viscous, inertial, and elastic moduli to characterize aortic wall behavior.
    Armentano RL; Barra JG; Levenson J; Simon A; Pichel RH
    Circ Res; 1995 Mar; 76(3):468-78. PubMed ID: 7859392
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Is arterial wall-strain stiffening an additional process responsible for atherosclerosis in coronary bifurcations?: an in vivo study based on dynamic CT and MRI.
    Ohayon J; Gharib AM; Garcia A; Heroux J; Yazdani SK; Malvè M; Tracqui P; Martinez MA; Doblare M; Finet G; Pettigrew RI
    Am J Physiol Heart Circ Physiol; 2011 Sep; 301(3):H1097-106. PubMed ID: 21685261
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A fiber-progressive-engagement model to evaluate the composition, microstructure, and nonlinear pseudoelastic behavior of porcine arteries and decellularized derivatives.
    Lin CH; Kao YC; Lin YH; Ma H; Tsay RY
    Acta Biomater; 2016 Dec; 46():101-111. PubMed ID: 27667016
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A link between stent radial forces and vascular wall remodeling: the discovery of an optimal stent radial force for minimal vessel restenosis.
    Freeman JW; Snowhill PB; Nosher JL
    Connect Tissue Res; 2010 Aug; 51(4):314-26. PubMed ID: 20388019
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Heterogeneous mechanics of the mouse pulmonary arterial network.
    Lee P; Carlson BE; Chesler N; Olufsen MS; Qureshi MU; Smith NP; Sochi T; Beard DA
    Biomech Model Mechanobiol; 2016 Oct; 15(5):1245-61. PubMed ID: 26792789
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Wall shear stress in the development of in-stent restenosis revisited. A critical review of clinical data on shear stress after intracoronary stent implantation.
    Jenei C; Balogh E; Szabó GT; Dézsi CA; Kőszegi Z
    Cardiol J; 2016; 23(4):365-73. PubMed ID: 27439365
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Simulation of stent deployment in a realistic human coronary artery.
    Gijsen FJ; Migliavacca F; Schievano S; Socci L; Petrini L; Thury A; Wentzel JJ; van der Steen AF; Serruys PW; Dubini G
    Biomed Eng Online; 2008 Aug; 7():23. PubMed ID: 18684321
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An experimental-nonlinear finite element study of a balloon expandable stent inside a realistic stenotic human coronary artery to investigate plaque and arterial wall injury.
    Karimi A; Razaghi R; Shojaei A; Navidbakhsh M
    Biomed Tech (Berl); 2015 Dec; 60(6):593-602. PubMed ID: 25870956
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Experimental and constitutive modeling approaches for a study of biomechanical properties of human coronary arteries.
    Jankowska MA; Bartkowiak-Jowsa M; Bedzinski R
    J Mech Behav Biomed Mater; 2015 Oct; 50():1-12. PubMed ID: 26086990
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Estimation of the axial wall strains induced by an arterial stenosis at peak flow.
    Doriot PA; Dorsaz PA
    Med Phys; 2005 Feb; 32(2):360-8. PubMed ID: 15789580
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Age related constitutive laws and stress distribution in human main coronary arteries with reference to residual strain.
    Valenta J; Vitek K; Cihak R; Konvickova S; Sochor M; Horny L
    Biomed Mater Eng; 2002; 12(2):121-34. PubMed ID: 12122236
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Histologic, histochemical, and biomechanical properties of fragments isolated from the anterior wall of abdominal aortic aneurysms.
    Tavares Monteiro JA; da Silva ES; Raghavan ML; Puech-Leão P; de Lourdes Higuchi M; Otoch JP
    J Vasc Surg; 2014 May; 59(5):1393-401.e1-2. PubMed ID: 23891493
    [TBL] [Abstract][Full Text] [Related]  

  • 39. On the in-series and in-parallel contribution of elastin assessed by a structure-based biomechanical model of the arterial wall.
    Roy S; Tsamis A; Prod'hom G; Stergiopulos N
    J Biomech; 2008; 41(4):737-43. PubMed ID: 18456913
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Passive mechanical properties of porcine left circumflex artery and its mathematical description.
    Carboni M; Desch GW; Weizsäcker HW
    Med Eng Phys; 2007 Jan; 29(1):8-16. PubMed ID: 16497534
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.