These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

471 related articles for article (PubMed ID: 33369399)

  • 1. 3D Printing of Liquid Crystal Elastomer Foams for Enhanced Energy Dissipation Under Mechanical Insult.
    Luo C; Chung C; Traugutt NA; Yakacki CM; Long KN; Yu K
    ACS Appl Mater Interfaces; 2021 Mar; 13(11):12698-12708. PubMed ID: 33369399
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Liquid-Crystal-Elastomer-Based Dissipative Structures by Digital Light Processing 3D Printing.
    Traugutt NA; Mistry D; Luo C; Yu K; Ge Q; Yakacki CM
    Adv Mater; 2020 Jul; 32(28):e2000797. PubMed ID: 32508011
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Soft elasticity optimises dissipation in 3D-printed liquid crystal elastomers.
    Mistry D; Traugutt NA; Sanborn B; Volpe RH; Chatham LS; Zhou R; Song B; Yu K; Long KN; Yakacki CM
    Nat Commun; 2021 Nov; 12(1):6677. PubMed ID: 34795228
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synergistic Energy Absorption Mechanisms of Architected Liquid Crystal Elastomers.
    Jeon SY; Shen B; Traugutt NA; Zhu Z; Fang L; Yakacki CM; Nguyen TD; Kang SH
    Adv Mater; 2022 Apr; 34(14):e2200272. PubMed ID: 35128733
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of alignment on the rate-dependent behavior of a main-chain liquid crystal elastomer.
    Martin Linares CP; Traugutt NA; Saed MO; Martin Linares A; Yakacki CM; Nguyen TD
    Soft Matter; 2020 Oct; 16(38):8782-8798. PubMed ID: 32812997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Liquid Crystal Elastomer Lattices with Thermally Programmable Deformation via Multi-Material 3D Printing.
    Kotikian A; Watkins AA; Bordiga G; Spielberg A; Davidson ZS; Bertoldi K; Lewis JA
    Adv Mater; 2024 Jan; ():e2310743. PubMed ID: 38189562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal-Responsive Liquid Crystal Elastomer Foam-based Compressible and Omnidirectional Gripper.
    Zhang X; Liao W; Wang Y; Yang Z
    Chem Asian J; 2023 Aug; 18(15):e202300340. PubMed ID: 37325932
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 4D Printing of a Liquid Crystal Elastomer with a Controllable Orientation Gradient.
    Zhang C; Lu X; Fei G; Wang Z; Xia H; Zhao Y
    ACS Appl Mater Interfaces; 2019 Nov; 11(47):44774-44782. PubMed ID: 31692319
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 4D Printing of Hygroscopic Liquid Crystal Elastomer Actuators.
    Kim K; Guo Y; Bae J; Choi S; Song HY; Park S; Hyun K; Ahn SK
    Small; 2021 Jun; 17(23):e2100910. PubMed ID: 33938152
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional printing of functionally graded liquid crystal elastomer.
    Wang Z; Wang Z; Zheng Y; He Q; Wang Y; Cai S
    Sci Adv; 2020 Sep; 6(39):. PubMed ID: 32978149
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multimaterial Printing of Liquid Crystal Elastomers with Integrated Stretchable Electronics.
    Vinciguerra MR; Patel DK; Zu W; Tavakoli M; Majidi C; Yao L
    ACS Appl Mater Interfaces; 2023 May; 15(20):24777-24787. PubMed ID: 37163362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reactive 3D Printing of Shape-Programmable Liquid Crystal Elastomer Actuators.
    Barnes M; Sajadi SM; Parekh S; Rahman MM; Ajayan PM; Verduzco R
    ACS Appl Mater Interfaces; 2020 Jun; 12(25):28692-28699. PubMed ID: 32484325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Processing advances in liquid crystal elastomers provide a path to biomedical applications.
    Ambulo CP; Tasmim S; Wang S; Abdelrahman MK; Zimmern PE; Ware TH
    J Appl Phys; 2020 Oct; 128(14):140901. PubMed ID: 33060862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A light-powered self-rotating liquid crystal elastomer drill.
    Yu Y; Hu H; Wu H; Dai Y; Li K
    Heliyon; 2024 Mar; 10(6):e27748. PubMed ID: 38533023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Programmable Liquid Crystal Elastomer Metamaterials With Soft Elasticity.
    Liang X; Li D
    Front Robot AI; 2022; 9():849516. PubMed ID: 35280962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapidly and Repeatedly Reprogrammable Liquid Crystalline Elastomer via a Shape Memory Mechanism.
    Chen G; Jin B; Shi Y; Zhao Q; Shen Y; Xie T
    Adv Mater; 2022 May; 34(21):e2201679. PubMed ID: 35357046
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physical Models from Physical Templates Using Biocompatible Liquid Crystal Elastomers as Morphologically Programmable Inks For 3D Printing.
    Prévôt ME; Ustunel S; Freychet G; Webb CR; Zhernenkov M; Pindak R; Clements RJ; Hegmann E
    Macromol Biosci; 2023 Mar; 23(3):e2200343. PubMed ID: 36415071
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reprogrammable, Reprocessible, and Self-Healable Liquid Crystal Elastomer with Exchangeable Disulfide Bonds.
    Wang Z; Tian H; He Q; Cai S
    ACS Appl Mater Interfaces; 2017 Sep; 9(38):33119-33128. PubMed ID: 28879760
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reducing the actuation threshold by incorporating a nonliquid crystal chain into a liquid crystal elastomer.
    Niu H; Wang Y; Wang J; Yang W; Dong Y; Bi M; Zhang J; Xu J; Bi S; Wang B; Gao Y; Li C; Zhang J
    RSC Adv; 2018 Jan; 8(9):4857-4866. PubMed ID: 35539513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of Liquid Crystallinity and Mechanical Deformation on the Molecular Relaxations of an Auxetic Liquid Crystal Elastomer.
    Raistrick T; Reynolds M; Gleeson HF; Mattsson J
    Molecules; 2021 Dec; 26(23):. PubMed ID: 34885896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.