These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 33369425)
21. Prediction of Orthosteric and Allosteric Regulations on Cannabinoid Receptors Using Supervised Machine Learning Classifiers. Bian Y; Jing Y; Wang L; Ma S; Jun JJ; Xie XQ Mol Pharm; 2019 Jun; 16(6):2605-2615. PubMed ID: 31013097 [TBL] [Abstract][Full Text] [Related]
22. Mechanisms for allosteric activation of protease DegS by ligand binding and oligomerization as revealed from molecular dynamics simulations. Lu C; Stock G; Knecht V Proteins; 2016 Nov; 84(11):1690-1705. PubMed ID: 27556733 [TBL] [Abstract][Full Text] [Related]
23. Integrative residue-intuitive machine learning and MD Approach to Unveil Allosteric Site and Mechanism for β2AR. Chen X; Wang K; Chen J; Wu C; Mao J; Song Y; Liu Y; Shao Z; Pu X Nat Commun; 2024 Sep; 15(1):8130. PubMed ID: 39285201 [TBL] [Abstract][Full Text] [Related]
24. Allosteric site-mediated active site inhibition of PBP2a using Quercetin 3-O-rutinoside and its combination. Rani N; Vijayakumar S; P T V L; Arunachalam A J Biomol Struct Dyn; 2016 Aug; 34(8):1778-96. PubMed ID: 26360629 [TBL] [Abstract][Full Text] [Related]
25. Identification and characterization of fragment binding sites for allosteric ligand design using the site identification by ligand competitive saturation hotspots approach (SILCS-Hotspots). MacKerell AD; Jo S; Lakkaraju SK; Lind C; Yu W Biochim Biophys Acta Gen Subj; 2020 Apr; 1864(4):129519. PubMed ID: 31911242 [TBL] [Abstract][Full Text] [Related]
26. Coupling dynamics and evolutionary information with structure to identify protein regulatory and functional binding sites. Mishra SK; Kandoi G; Jernigan RL Proteins; 2019 Oct; 87(10):850-868. PubMed ID: 31141211 [TBL] [Abstract][Full Text] [Related]
27. Intermediate-aided allostery mechanism for α-glucosidase by Xanthene-11v as an inhibitor using residue interaction network analysis. Moosavi-Movahedi Z; Salehi N; Habibi-Rezaei M; Qassemi F; Karimi-Jafari MH J Mol Graph Model; 2023 Jul; 122():108495. PubMed ID: 37116337 [TBL] [Abstract][Full Text] [Related]
28. Simulation of Ligand Binding to Membrane Proteins. Murail S Methods Mol Biol; 2017; 1635():359-381. PubMed ID: 28755380 [TBL] [Abstract][Full Text] [Related]
30. Revealing the Positive Binding Cooperativity Mechanism between the Orthosteric and the Allosteric Antagonists of CCR2 by Metadynamics and Gaussian Accelerated Molecular Dynamics Simulations. An X; Bai Q; Bing Z; Liu H; Zhang Q; Liu H; Yao X ACS Chem Neurosci; 2020 Feb; 11(4):628-637. PubMed ID: 31968162 [TBL] [Abstract][Full Text] [Related]
31. In silico mapping of allosteric ligand binding sites in type-1 cannabinoid receptor. Sabatucci A; Tortolani D; Dainese E; Maccarrone M Biotechnol Appl Biochem; 2018 Jan; 65(1):21-28. PubMed ID: 28833445 [TBL] [Abstract][Full Text] [Related]
32. HPC Analysis of Multiple Binding Sites Communication and Allosteric Modulations in Drug Design: The HSP Case Study. Chiappori F; Milanesi L; Merelli I Curr Drug Targets; 2016; 17(14):1610-1625. PubMed ID: 26648062 [TBL] [Abstract][Full Text] [Related]
33. Ligand Binding, Unbinding, and Allosteric Effects: Deciphering Small-Molecule Modulation of HSP90. D'Annessa I; Raniolo S; Limongelli V; Di Marino D; Colombo G J Chem Theory Comput; 2019 Nov; 15(11):6368-6381. PubMed ID: 31538783 [TBL] [Abstract][Full Text] [Related]
34. Enhanced Sampling Applied to Modeling Allosteric Regulation in Transcription. Wang Y; Brooks CL J Phys Chem Lett; 2019 Oct; 10(19):5963-5968. PubMed ID: 31535860 [TBL] [Abstract][Full Text] [Related]
35. Molecular interactions of type I and type II positive allosteric modulators with the human α7 nicotinic acetylcholine receptor: an in silico study. Targowska-Duda KM; Kaczor AA; Jozwiak K; Arias HR J Biomol Struct Dyn; 2019 Feb; 37(2):411-439. PubMed ID: 29363414 [TBL] [Abstract][Full Text] [Related]
36. Identification of potential allosteric binding sites in cathepsin K based on intramolecular communication. Rocha GV; Bastos LS; Costa MGS Proteins; 2020 Dec; 88(12):1675-1687. PubMed ID: 32683717 [TBL] [Abstract][Full Text] [Related]
37. ATOMDANCE: Kernel-based denoising and choreographic analysis for protein dynamic comparison. Babbitt GA; Rajendran M; Lynch ML; Asare-Bediako R; Mouli LT; Ryan CJ; Srivastava H; Rynkiewicz P; Phadke K; Reed ML; Moore N; Ferran MC; Fokoue EP Biophys J; 2024 Sep; 123(17):2705-2715. PubMed ID: 38515299 [TBL] [Abstract][Full Text] [Related]
38. Dancing through Life: Molecular Dynamics Simulations and Network-Centric Modeling of Allosteric Mechanisms in Hsp70 and Hsp110 Chaperone Proteins. Stetz G; Verkhivker GM PLoS One; 2015; 10(11):e0143752. PubMed ID: 26619280 [TBL] [Abstract][Full Text] [Related]
39. Recognition of protein allosteric states and residues: Machine learning approaches. Zhou H; Dong Z; Tao P J Comput Chem; 2018 Jul; 39(20):1481-1490. PubMed ID: 29604117 [TBL] [Abstract][Full Text] [Related]
40. Probing Allosteric Inhibition Mechanisms of the Hsp70 Chaperone Proteins Using Molecular Dynamics Simulations and Analysis of the Residue Interaction Networks. Stetz G; Verkhivker GM J Chem Inf Model; 2016 Aug; 56(8):1490-517. PubMed ID: 27447295 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]