These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 33369426)

  • 1. Diflunisal Derivatives as Modulators of ACMS Decarboxylase Targeting the Tryptophan-Kynurenine Pathway.
    Yang Y; Borel T; de Azambuja F; Johnson D; Sorrentino JP; Udokwu C; Davis I; Liu A; Altman RA
    J Med Chem; 2021 Jan; 64(1):797-811. PubMed ID: 33369426
    [TBL] [Abstract][Full Text] [Related]  

  • 2. α-Amino-β-carboxymuconate-ε-semialdehyde Decarboxylase (ACMSD) Inhibitors as Novel Modulators of De Novo Nicotinamide Adenine Dinucleotide (NAD
    Pellicciari R; Liscio P; Giacchè N; De Franco F; Carotti A; Robertson J; Cialabrini L; Katsyuba E; Raffaelli N; Auwerx J
    J Med Chem; 2018 Feb; 61(3):745-759. PubMed ID: 29345930
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phthalate esters enhance quinolinate production by inhibiting alpha-amino-beta-carboxymuconate-epsilon-semialdehyde decarboxylase (ACMSD), a key enzyme of the tryptophan pathway.
    Fukuwatari T; Ohsaki S; Fukuoka S; Sasaki R; Shibata K
    Toxicol Sci; 2004 Oct; 81(2):302-8. PubMed ID: 15229365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quaternary structure of α-amino-β-carboxymuconate-ϵ-semialdehyde decarboxylase (ACMSD) controls its activity.
    Yang Y; Davis I; Matsui T; Rubalcava I; Liu A
    J Biol Chem; 2019 Jul; 294(30):11609-11621. PubMed ID: 31189654
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and expression of a cDNA encoding human alpha-amino-beta-carboxymuconate-epsilon-semialdehyde decarboxylase (ACMSD). A key enzyme for the tryptophan-niacine pathway and "quinolinate hypothesis".
    Fukuoka S; Ishiguro K; Yanagihara K; Tanabe A; Egashira Y; Sanada H; Shibata K
    J Biol Chem; 2002 Sep; 277(38):35162-7. PubMed ID: 12140278
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure of alpha-amino-beta-carboxymuconate-epsilon-semialdehyde decarboxylase: insight into the active site and catalytic mechanism of a novel decarboxylation reaction.
    Martynowski D; Eyobo Y; Li T; Yang K; Liu A; Zhang H
    Biochemistry; 2006 Sep; 45(35):10412-21. PubMed ID: 16939194
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of rat hepatic α-amino-β-carboxymuconate-ε-semialdehyde decarboxylase, a key enzyme in the tryptophan- NAD pathway, by dietary cholesterol and sterol regulatory element-binding protein-2.
    Matsuda H; Sato M; Yakushiji M; Koshiguchi M; Hirai S; Egashira Y
    Eur J Nutr; 2014; 53(2):469-77. PubMed ID: 25289390
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of mouse hepatic alpha-amino-beta-carboxymuconate-epsilon-semialdehyde decarboxylase, a key enzyme in the tryptophan-nicotinamide adenine dinucleotide pathway, by hepatocyte nuclear factor 4alpha and peroxisome proliferator-activated receptor alpha.
    Shin M; Kim I; Inoue Y; Kimura S; Gonzalez FJ
    Mol Pharmacol; 2006 Oct; 70(4):1281-90. PubMed ID: 16807375
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification and expression of alpha cDNA encoding human 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase (ACMSD): a key enzyme for the tryptophan-niacine pathway and quinolinate hypothesis.
    Fukuoka S; Ishiguro K; Tanabe A; Egashira Y; Sanada H; Fukuwatari T; Shibata K
    Adv Exp Med Biol; 2003; 527():443-53. PubMed ID: 15206762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential effects of pyrazinamide and clofibrate on gene expression of rat hepatic alpha-amino-beta-carboxymuconate-epsilon-semialdehyde decarboxylase, a key enzyme of the tryptophan-NAD pathway.
    Egashira Y; Sato M; Sato M; Sugawara R; Tanabe A; Shin M; Sanada H
    Int J Vitam Nutr Res; 2006 May; 76(3):138-46. PubMed ID: 17048193
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The crystal structure of human alpha-amino-beta-carboxymuconate-epsilon-semialdehyde decarboxylase in complex with 1,3-dihydroxyacetonephosphate suggests a regulatory link between NAD synthesis and glycolysis.
    Garavaglia S; Perozzi S; Galeazzi L; Raffaelli N; Rizzi M
    FEBS J; 2009 Nov; 276(22):6615-23. PubMed ID: 19843166
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tissue expression and biochemical characterization of human 2-amino 3-carboxymuconate 6-semialdehyde decarboxylase, a key enzyme in tryptophan catabolism.
    Pucci L; Perozzi S; Cimadamore F; Orsomando G; Raffaelli N
    FEBS J; 2007 Feb; 274(3):827-40. PubMed ID: 17288562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human α-amino-β-carboxymuconate-ε-semialdehyde decarboxylase (ACMSD): a structural and mechanistic unveiling.
    Huo L; Liu F; Iwaki H; Li T; Hasegawa Y; Liu A
    Proteins; 2015 Jan; 83(1):178-87. PubMed ID: 25392945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential effects of dietary fatty acids on rat liver alpha-amino-beta-carboxymuconate-epsilon-semialdehyde decarboxylase activity and gene expression.
    Egashira Y; Murotani G; Tanabe A; Saito K; Uehara K; Morise A; Sato M; Sanada H
    Biochim Biophys Acta; 2004 Nov; 1686(1-2):118-24. PubMed ID: 15522828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ACMSD mediated de novo NAD
    Zeng F; Zhou P; Wang M; Xie L; Huang X; Wang Y; Huang J; Shao X; Yang Y; Liu W; Gu M; Yu Y; Sun F; He M; Li Y; Zhang Z; Gong W; Wang Y
    Diabetes Res Clin Pract; 2023 Dec; 206():111014. PubMed ID: 37977551
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure based mimicking of Phthalic acid esters (PAEs) and inhibition of hACMSD, an important enzyme of the tryptophan kynurenine metabolism pathway.
    Singh N; Dalal V; Kumar P
    Int J Biol Macromol; 2018 Mar; 108():214-224. PubMed ID: 29217180
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purification and properties of alpha-amino-beta-carboxymuconate-epsilon-semialdehyde decarboxylase (ACMSD), key enzyme of niacin synthesis from tryptophan, from hog kidney.
    Egashira Y; Kouhashi H; Ohta T; Sanada H
    J Nutr Sci Vitaminol (Tokyo); 1996 Jun; 42(3):173-83. PubMed ID: 8866254
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transition metal-catalyzed nonoxidative decarboxylation reactions.
    Liu A; Zhang H
    Biochemistry; 2006 Sep; 45(35):10407-11. PubMed ID: 16939193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for a dual role of an active site histidine in α-amino-β-carboxymuconate-ε-semialdehyde decarboxylase.
    Huo L; Fielding AJ; Chen Y; Li T; Iwaki H; Hosler JP; Chen L; Hasegawa Y; Que L; Liu A
    Biochemistry; 2012 Jul; 51(29):5811-21. PubMed ID: 22746257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of dietary phytol on the expression of α-amino-β-carboxymuconate-ε-semialdehyde decarboxylase, a key enzyme of tryptophan-niacin metabolism, in rats.
    Matsuda H; Gomi RT; Hirai S; Egashira Y
    Biosci Biotechnol Biochem; 2013; 77(7):1416-9. PubMed ID: 23832361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.