BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 33369601)

  • 21. The influence of early-phase remodeling events on the biomechanical properties of engineered vascular tissues.
    Tosun Z; Villegas-Montoya C; McFetridge PS
    J Vasc Surg; 2011 Nov; 54(5):1451-60. PubMed ID: 21872418
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tubular collagen scaffolds with radial elasticity for hollow organ regeneration.
    Versteegden LR; van Kampen KA; Janke HP; Tiemessen DM; Hoogenkamp HR; Hafmans TG; Roozen EA; Lomme RM; van Goor H; Oosterwijk E; Feitz WF; van Kuppevelt TH; Daamen WF
    Acta Biomater; 2017 Apr; 52():1-8. PubMed ID: 28179160
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A scaffold-bioreactor system for a tissue-engineered trachea.
    Lin CH; Hsu SH; Huang CE; Cheng WT; Su JM
    Biomaterials; 2009 Sep; 30(25):4117-26. PubMed ID: 19447489
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Flow rates in perfusion bioreactors to maximise mineralisation in bone tissue engineering in vitro.
    Zhao F; van Rietbergen B; Ito K; Hofmann S
    J Biomech; 2018 Oct; 79():232-237. PubMed ID: 30149981
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In Vitro Endothelialization of Biodegradable Vascular Grafts Via Endothelial Progenitor Cell Seeding and Maturation in a Tubular Perfusion System Bioreactor.
    Melchiorri AJ; Bracaglia LG; Kimerer LK; Hibino N; Fisher JP
    Tissue Eng Part C Methods; 2016 Jul; 22(7):663-70. PubMed ID: 27206552
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Estimation of the physiological mechanical conditioning in vascular tissue engineering by a predictive fluid-structure interaction approach.
    Tresoldi C; Bianchi E; Pellegata AF; Dubini G; Mantero S
    Comput Methods Biomech Biomed Engin; 2017 Aug; 20(10):1077-1088. PubMed ID: 28569086
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Design considerations and challenges for mechanical stretch bioreactors in tissue engineering.
    Lei Y; Ferdous Z
    Biotechnol Prog; 2016 May; 32(3):543-53. PubMed ID: 26929197
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Perfusion bioreactor for vascular tissue engineering with capacities for longitudinal stretch.
    Mironov V; Kasyanov V; McAllister K; Oliver S; Sistino J; Markwald R
    J Craniofac Surg; 2003 May; 14(3):340-7. PubMed ID: 12826805
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A mesofluidics-based test platform for systematic development of scaffolds for in situ cardiovascular tissue engineering.
    Smits AI; Driessen-Mol A; Bouten CV; Baaijens FP
    Tissue Eng Part C Methods; 2012 Jun; 18(6):475-85. PubMed ID: 22224590
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Application of Bioreactors to Improve Functionality of Bone Tissue Engineering Constructs: A Systematic Review.
    Nokhbatolfoghahaei H; Rad MR; Khani MM; Shahriari S; Nadjmi N; Khojasteh A
    Curr Stem Cell Res Ther; 2017; 12(7):564-599. PubMed ID: 28828969
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Compact and tunable stretch bioreactor advancing tissue engineering implementation. Application to engineered cardiac constructs.
    Putame G; Gabetti S; Carbonaro D; Meglio FD; Romano V; Sacco AM; Belviso I; Serino G; Bignardi C; Morbiducci U; Castaldo C; Massai D
    Med Eng Phys; 2020 Oct; 84():1-9. PubMed ID: 32977905
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Assessment of cartilage regeneration on 3D collagen-polycaprolactone scaffolds: Evaluation of growth media in static and in perfusion bioreactor dynamic culture.
    Theodoridis K; Aggelidou E; Manthou M; Demiri E; Bakopoulou A; Kritis A
    Colloids Surf B Biointerfaces; 2019 Nov; 183():110403. PubMed ID: 31400614
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tendon Differentiation on Decellularized Extracellular Matrix Under Cyclic Loading.
    Youngstrom DW; Barrett JG
    Methods Mol Biol; 2016; 1502():195-202. PubMed ID: 27062597
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modulation of cell differentiation in bone tissue engineering constructs cultured in a bioreactor.
    Holtorf HL; Jansen JA; Mikos AG
    Adv Exp Med Biol; 2006; 585():225-41. PubMed ID: 17120788
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Encapsulated explant in novel low shear perfusion bioreactor improve cell isolation, expansion and colony forming unit.
    Gharravi AM
    Cell Tissue Bank; 2019 Mar; 20(1):25-34. PubMed ID: 30673903
    [TBL] [Abstract][Full Text] [Related]  

  • 36. New pulsatile hydrostatic pressure bioreactor for vascular tissue-engineered constructs.
    Shaikh FM; O'Brien TP; Callanan A; Kavanagh EG; Burke PE; Grace PA; McGloughlin TM
    Artif Organs; 2010 Feb; 34(2):153-8. PubMed ID: 19995361
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Perfusion flow bioreactor for 3D in situ imaging: investigating cell/biomaterials interactions.
    Stephens JS; Cooper JA; Phelan FR; Dunkers JP
    Biotechnol Bioeng; 2007 Jul; 97(4):952-61. PubMed ID: 17149772
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Engineering Vascular Bioreactor Systems to Closely Mimic Physiological Forces
    Mitchell TC; Feng NL; Lam YT; Michael PL; Santos M; Wise SG
    Tissue Eng Part B Rev; 2023 Jun; 29(3):232-243. PubMed ID: 36274223
    [No Abstract]   [Full Text] [Related]  

  • 39. A novel automated cell-seeding device for tissue engineering of tubular scaffolds: design and functional validation.
    Mohebbi-Kalhori D; Rukhlova M; Ajji A; Bureau M; Moreno MJ
    J Tissue Eng Regen Med; 2012 Oct; 6(9):710-20. PubMed ID: 21948700
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A three-dimensional computational fluid dynamics model of shear stress distribution during neotissue growth in a perfusion bioreactor.
    Guyot Y; Luyten FP; Schrooten J; Papantoniou I; Geris L
    Biotechnol Bioeng; 2015 Dec; 112(12):2591-600. PubMed ID: 26059101
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.