BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 33369602)

  • 1. Tethered Bilayer Lipid Membranes to Monitor Heat Transfer between Gold Nanoparticles and Lipid Membranes.
    Alghalayini A; Jiang L; Gu X; Yeoh GH; Cranfield CG; Timchenko V; Cornell BA; Valenzuela SM
    J Vis Exp; 2020 Dec; (166):. PubMed ID: 33369602
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time monitoring of heat transfer between gold nanoparticles and tethered bilayer lipid membranes.
    Alghalayini A; Jiang L; Gu X; Yeoh GH; Cranfield CG; Timchenko V; Cornell BA; Valenzuela SM
    Biochim Biophys Acta Biomembr; 2020 Sep; 1862(9):183334. PubMed ID: 32380171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combined electrochemistry and surface-enhanced infrared absorption spectroscopy of gramicidin A incorporated into tethered bilayer lipid membranes.
    Kozuch J; Steinem C; Hildebrandt P; Millo D
    Angew Chem Int Ed Engl; 2012 Aug; 51(32):8114-7. PubMed ID: 22865570
    [No Abstract]   [Full Text] [Related]  

  • 4. Tethered bilayer lipid membranes (tBLMs): interest and applications for biological membrane investigations.
    Rebaud S; Maniti O; Girard-Egrot AP
    Biochimie; 2014 Dec; 107 Pt A():135-42. PubMed ID: 24998327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Role of Temperature and Lipid Charge on Intake/Uptake of Cationic Gold Nanoparticles into Lipid Bilayers.
    Lolicato F; Joly L; Martinez-Seara H; Fragneto G; Scoppola E; Baldelli Bombelli F; Vattulainen I; Akola J; Maccarini M
    Small; 2019 Jun; 15(23):e1805046. PubMed ID: 31012268
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct measurements of heating by electromagnetically trapped gold nanoparticles on supported lipid bilayers.
    Bendix PM; Reihani SN; Oddershede LB
    ACS Nano; 2010 Apr; 4(4):2256-62. PubMed ID: 20369898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation and finite element analysis of tethered bilayer lipid structures.
    Kwak KJ; Valincius G; Liao WC; Hu X; Wen X; Lee A; Yu B; Vanderah DJ; Lu W; Lee LJ
    Langmuir; 2010 Dec; 26(23):18199-208. PubMed ID: 20977245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monovalent and Oriented Labeling of Gold Nanoprobes for the High-Resolution Tracking of a Single-Membrane Molecule.
    Liao YH; Lin CH; Cheng CY; Wong WC; Juo JY; Hsieh CL
    ACS Nano; 2019 Oct; 13(10):10918-10928. PubMed ID: 31259529
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmonic nanoantenna arrays for surface-enhanced Raman spectroscopy of lipid molecules embedded in a bilayer membrane.
    Kühler P; Weber M; Lohmüller T
    ACS Appl Mater Interfaces; 2014 Jun; 6(12):8947-52. PubMed ID: 24896979
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemical studies of blocking properties of solid supported tethered lipid membranes on gold.
    Zebrowska A; Krysiński P; Łotowski Z
    Bioelectrochemistry; 2002 May; 56(1-2):179-84. PubMed ID: 12009470
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Membrane-embedded nanoparticles induce lipid rearrangements similar to those exhibited by biological membrane proteins.
    Van Lehn RC; Alexander-Katz A
    J Phys Chem B; 2014 Nov; 118(44):12586-98. PubMed ID: 25347475
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A simulation study on nanoscale holes generated by gold nanoparticles on negative lipid bilayers.
    Lin JQ; Zheng YG; Zhang HW; Chen Z
    Langmuir; 2011 Jul; 27(13):8323-32. PubMed ID: 21634406
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of gold nanoparticle on structure and fluidity of lipid membrane.
    Mhashal AR; Roy S
    PLoS One; 2014; 9(12):e114152. PubMed ID: 25469786
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measuring Activation Energies for Ion Transport Using Tethered Bilayer Lipid Membranes (tBLMs).
    Alobeedallah H; Cornell BA; Coster H
    Methods Mol Biol; 2022; 2402():71-79. PubMed ID: 34854036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mixed Fluorinated/Hydrogenated Self-Assembled Monolayer-Protected Gold Nanoparticles: In Silico and In Vitro Behavior.
    Marson D; Guida F; Şologan M; Boccardo S; Pengo P; Perissinotto F; Iacuzzi V; Pellizzoni E; Polizzi S; Casalis L; Pasquato L; Pacor S; Tossi A; Posocco P
    Small; 2019 Apr; 15(17):e1900323. PubMed ID: 30941901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of Au-Nanoparticle-Embedded Lipid Bilayer Membranes Supported on Solid Substrates.
    Sakaguchi N; Kimura Y; Hirano-Iwata A; Ogino T
    J Phys Chem B; 2017 May; 121(17):4474-4481. PubMed ID: 28414450
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A molecular toolkit for highly insulating tethered bilayer lipid membranes on various substrates.
    Atanasov V; Atanasova PP; Vockenroth IK; Knorr N; Köper I
    Bioconjug Chem; 2006; 17(3):631-7. PubMed ID: 16704200
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cascading Effects of Nanoparticle Coatings: Surface Functionalization Dictates the Assemblage of Complexed Proteins and Subsequent Interaction with Model Cell Membranes.
    Melby ES; Lohse SE; Park JE; Vartanian AM; Putans RA; Abbott HB; Hamers RJ; Murphy CJ; Pedersen JA
    ACS Nano; 2017 Jun; 11(6):5489-5499. PubMed ID: 28482159
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tethered-bilayer lipid membranes as a support for membrane-active peptides.
    Cornell BA; Krishna G; Osman PD; Pace RD; Wieczorek L
    Biochem Soc Trans; 2001 Aug; 29(Pt 4):613-7. PubMed ID: 11498038
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lipid bilayer templated gold nanoparticles nanoring formation using zirconium ion coordination chemistry.
    Xiao X; Montaño GA; Allen A; Achyuthan KE; Wheeler DR; Brozik SM
    Langmuir; 2011 Aug; 27(15):9484-9. PubMed ID: 21699157
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.