BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 33369743)

  • 1. ATP-sensitive K
    Strazza PS; de Siqueira DVF; Leão RM
    J Physiol; 2021 Mar; 599(5):1611-1630. PubMed ID: 33369743
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Salicylate activates K
    de Siqueira DVF; Strazza PS; Benites NM; Leão RM
    Eur J Pharmacol; 2022 Jul; 926():175026. PubMed ID: 35569546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High doses of salicylate reduces glycinergic inhibition in the dorsal cochlear nucleus of the rat.
    Zugaib J; Ceballos CC; Leão RM
    Hear Res; 2016 Feb; 332():188-198. PubMed ID: 26548740
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Context-dependent synaptic action of glycinergic and GABAergic inputs in the dorsal cochlear nucleus.
    Golding NL; Oertel D
    J Neurosci; 1996 Apr; 16(7):2208-19. PubMed ID: 8601801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Essential Role of Somatic Kv2 Channels in High-Frequency Firing in Cartwheel Cells of the Dorsal Cochlear Nucleus.
    Irie T
    eNeuro; 2021; 8(3):. PubMed ID: 33837049
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiological identification of the targets of cartwheel cells in the dorsal cochlear nucleus.
    Golding NL; Oertel D
    J Neurophysiol; 1997 Jul; 78(1):248-60. PubMed ID: 9242277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tonic zinc inhibits spontaneous firing in dorsal cochlear nucleus principal neurons by enhancing glycinergic neurotransmission.
    Perez-Rosello T; Anderson CT; Ling C; Lippard SJ; Tzounopoulos T
    Neurobiol Dis; 2015 Sep; 81():14-9. PubMed ID: 25796568
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular layer inhibitory interneurons provide feedforward and lateral inhibition in the dorsal cochlear nucleus.
    Roberts MT; Trussell LO
    J Neurophysiol; 2010 Nov; 104(5):2462-73. PubMed ID: 20719922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Age-related changes in the response properties of cartwheel cells in rat dorsal cochlear nucleus.
    Caspary DM; Hughes LF; Schatteman TA; Turner JG
    Hear Res; 2006; 216-217():207-15. PubMed ID: 16644158
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membrane properties of mouse dorsal cochlear nucleus neurons in vitro.
    Ağar E; Green GG; Sanders DJ
    J Basic Clin Physiol Pharmacol; 1997; 8(3):157-79. PubMed ID: 9429984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of Excitability of Stellate Neurons in the Ventral Cochlear Nucleus of Mice by ATP-Sensitive Potassium Channels.
    Bal R; Ozturk G; Etem EO; Him A; Cengiz N; Kuloglu T; Tuzcu M; Yildirim C; Tektemur A
    J Membr Biol; 2018 Feb; 251(1):163-178. PubMed ID: 29379989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of electrophysiological properties of fusiform neurons from the dorsal cochlear nucleus of mice before and after hearing onset.
    Benites NM; Rodrigues B; da Silveira CH; Kushmerick C; Leão RM
    J Neurophysiol; 2023 Jul; 130(1):5-22. PubMed ID: 37222444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cartwheel and superficial stellate cells of the dorsal cochlear nucleus of mice: intracellular recordings in slices.
    Zhang S; Oertel D
    J Neurophysiol; 1993 May; 69(5):1384-97. PubMed ID: 8389821
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intense sound-induced plasticity in the dorsal cochlear nucleus of rats: evidence for cholinergic receptor upregulation.
    Kaltenbach JA; Zhang J
    Hear Res; 2007 Apr; 226(1-2):232-43. PubMed ID: 16914276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spontaneous Activity Defines Effective Convergence Ratios in an Inhibitory Circuit.
    Lu HW; Trussell LO
    J Neurosci; 2016 Mar; 36(11):3268-80. PubMed ID: 26985036
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Loose coupling between SK and P/Q-type Ca
    Irie T
    J Neurophysiol; 2019 Oct; 122(4):1721-1727. PubMed ID: 31461365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Somatosensory effects on neurons in dorsal cochlear nucleus.
    Young ED; Nelken I; Conley RA
    J Neurophysiol; 1995 Feb; 73(2):743-65. PubMed ID: 7760132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of interneuron firing by subthreshold synaptic potentials in principal cells of the dorsal cochlear nucleus.
    Apostolides PF; Trussell LO
    Neuron; 2014 Jul; 83(2):324-330. PubMed ID: 25002229
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ion channels generating complex spikes in cartwheel cells of the dorsal cochlear nucleus.
    Kim Y; Trussell LO
    J Neurophysiol; 2007 Feb; 97(2):1705-25. PubMed ID: 17289937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional characteristics of spontaneously active neurons in rat dorsal cochlear nucleus in vitro.
    Waller HJ; Godfrey DA
    J Neurophysiol; 1994 Feb; 71(2):467-78. PubMed ID: 8176420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.