These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
279 related articles for article (PubMed ID: 33370061)
1. Low-Cost, Three-Dimensionally-Printed, Anatomical Models for Optimization of Orbital Wall Reconstruction. Dvoracek LA; Lee JY; Unadkat JV; Lee YH; Thakrar D; Losee JE; Goldstein JA Plast Reconstr Surg; 2021 Jan; 147(1):162-166. PubMed ID: 33370061 [TBL] [Abstract][Full Text] [Related]
2. Generation of customized orbital implant templates using 3-dimensional printing for orbital wall reconstruction. Kang S; Kwon J; Ahn CJ; Esmaeli B; Kim GB; Kim N; Sa HS Eye (Lond); 2018 Dec; 32(12):1864-1870. PubMed ID: 30154573 [TBL] [Abstract][Full Text] [Related]
3. Customized Orbital Wall Reconstruction Using Three-Dimensionally Printed Rapid Prototype Model in Patients With Orbital Wall Fracture. Oh TS; Jeong WS; Chang TJ; Koh KS; Choi JW J Craniofac Surg; 2016 Nov; 27(8):2020-2024. PubMed ID: 28005746 [TBL] [Abstract][Full Text] [Related]
5. Implantation of Customized, Preshaped Implant for Orbital Fractures with the Aid of Three-dimensional Printing. Nekooei S; Sardabi M; Razavi ME; Nekooei A; Kiarudi MY Middle East Afr J Ophthalmol; 2018; 25(1):56-58. PubMed ID: 29899654 [TBL] [Abstract][Full Text] [Related]
6. Customized Titanium Mesh Based on the 3D Printed Model vs. Manual Intraoperative Bending of Titanium Mesh for Reconstructing of Orbital Bone Fracture: A Randomized Clinical Trial. Raisian S; Fallahi HR; Khiabani KS; Heidarizadeh M; Azdoo S Rev Recent Clin Trials; 2017; 12(3):154-158. PubMed ID: 28828975 [TBL] [Abstract][Full Text] [Related]
7. Technical concept of patient-specific, ultrahigh molecular weight polyethylene orbital wall implant. Kozakiewicz M; Elgalal M; Walkowiak B; Stefanczyk L J Craniomaxillofac Surg; 2013 Jun; 41(4):282-90. PubMed ID: 23333489 [TBL] [Abstract][Full Text] [Related]
8. Customized titanium reconstruction of post-traumatic orbital wall defects: a review of 22 cases. Mustafa SF; Evans PL; Bocca A; Patton DW; Sugar AW; Baxter PW Int J Oral Maxillofac Surg; 2011 Dec; 40(12):1357-62. PubMed ID: 21885249 [TBL] [Abstract][Full Text] [Related]
9. Navigation-Assisted Isolated Medial Orbital Wall Fracture Reconstruction Using an U-HA/PLLA Sheet via a Transcaruncular Approach. Dong QN; Karino M; Koike T; Ide T; Okuma S; Kaneko I; Osako R; Kanno T J Invest Surg; 2020 Aug; 33(7):644-652. PubMed ID: 30644798 [No Abstract] [Full Text] [Related]
10. Clinical effects of 3-D printing-assisted personalized reconstructive surgery for blowout orbital fractures. Fan B; Chen H; Sun YJ; Wang BF; Che L; Liu SY; Li GY Graefes Arch Clin Exp Ophthalmol; 2017 Oct; 255(10):2051-2057. PubMed ID: 28786025 [TBL] [Abstract][Full Text] [Related]
11. Low-Cost 3D Printing Orbital Implant Templates in Secondary Orbital Reconstructions. Callahan AB; Campbell AA; Petris C; Kazim M Ophthalmic Plast Reconstr Surg; 2017; 33(5):376-380. PubMed ID: 28230707 [TBL] [Abstract][Full Text] [Related]
12. Accuracy and predictability in use of AO three-dimensionally preformed titanium mesh plates for posttraumatic orbital reconstruction: a pilot study. Scolozzi P; Momjian A; Heuberger J; Andersen E; Broome M; Terzic A; Jaques B J Craniofac Surg; 2009 Jul; 20(4):1108-13. PubMed ID: 19553851 [TBL] [Abstract][Full Text] [Related]
13. Application of Computer-Aided Designing and Rapid Prototyping Technologies in Reconstruction of Blowout Fractures of the Orbital Floor. Tabaković SZ; Konstantinović VS; Radosavljević R; Movrin D; Hadžistević M; Hatab N J Craniofac Surg; 2015 Jul; 26(5):1558-63. PubMed ID: 26125649 [TBL] [Abstract][Full Text] [Related]
14. Computer-assisted planning, stereolithographic modeling, and intraoperative navigation for complex orbital reconstruction: a descriptive study in a preliminary cohort. Bell RB; Markiewicz MR J Oral Maxillofac Surg; 2009 Dec; 67(12):2559-70. PubMed ID: 19925972 [TBL] [Abstract][Full Text] [Related]
15. Personalized Reconstruction of Traumatic Orbital Defects Based on Precise Three-Dimensional Orientation and Measurements of the Globe. Huang L; Lin L; Wang Z; Shi B; Zhu X; Qiu Y; Huang Y; Yu X; Liao Y J Craniofac Surg; 2017 Jan; 28(1):172-179. PubMed ID: 27893559 [TBL] [Abstract][Full Text] [Related]
16. [Application of three-dimensional printing combined with surgical navigation and endoscopy in orbital fracture reconstruction]. Liao HF; Yu JH; Hu CQ; Hu XY; Liu Q; Wang YH; Wang AA; Xu QH Zhonghua Yan Ke Za Zhi; 2019 Sep; 55(9):658-664. PubMed ID: 31495150 [No Abstract] [Full Text] [Related]
17. Patient-Specific Orbital Implants: Development and Implementation of Technology for More Accurate Orbital Reconstruction. Podolsky DJ; Mainprize JG; Edwards GP; Antonyshyn OM J Craniofac Surg; 2016 Jan; 27(1):131-3. PubMed ID: 26674886 [TBL] [Abstract][Full Text] [Related]
18. Patient-specific puzzle implant preformed with 3D-printed rapid prototype model for combined orbital floor and medial wall fracture. Kim YC; Min KH; Choi JW; Koh KS; Oh TS; Jeong WS J Plast Reconstr Aesthet Surg; 2018 Apr; 71(4):496-503. PubMed ID: 29233510 [TBL] [Abstract][Full Text] [Related]
19. Semiautomatic procedure for individual preforming of titanium meshes for orbital fractures. Metzger MC; Schön R; Zizelmann C; Weyer N; Gutwald R; Schmelzeisen R Plast Reconstr Surg; 2007 Mar; 119(3):969-76. PubMed ID: 17312503 [TBL] [Abstract][Full Text] [Related]
20. Application of Three-Dimensional Printing Technology in the Orbital Blowout Fracture Reconstruction. Zhang X; Chen W; Luo TY; Ma J; Dong Z; Cao G; Xu JK; Liu BY; Zhang QR; Zhang SL J Craniofac Surg; 2019 Sep; 30(6):1825-1828. PubMed ID: 31058723 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]