These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 33370091)

  • 1. Nanoplasmonic-Nanofluidic Single-Molecule Biosensors for Ultrasmall Sample Volumes.
    Špačková B; Šípová-Jungová H; Käll M; Fritzsche J; Langhammer C
    ACS Sens; 2021 Jan; 6(1):73-82. PubMed ID: 33370091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single Particle Nanoplasmonic Sensing in Individual Nanofluidic Channels.
    Fritzsche J; Albinsson D; Fritzsche M; Antosiewicz TJ; Westerlund F; Langhammer C
    Nano Lett; 2016 Dec; 16(12):7857-7864. PubMed ID: 27960495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theory, fabrication and applications of microfluidic and nanofluidic biosensors.
    Prakash S; Pinti M; Bhushan B
    Philos Trans A Math Phys Eng Sci; 2012 May; 370(1967):2269-303. PubMed ID: 22509059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoparticle-Enhanced Plasmonic Biosensor for Digital Biomarker Detection in a Microarray.
    Belushkin A; Yesilkoy F; Altug H
    ACS Nano; 2018 May; 12(5):4453-4461. PubMed ID: 29715005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trends and challenges of refractometric nanoplasmonic biosensors: a review.
    Estevez MC; Otte MA; Sepulveda B; Lechuga LM
    Anal Chim Acta; 2014 Jan; 806():55-73. PubMed ID: 24331040
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Promises and Challenges of Nanoplasmonic Devices for Refractometric Biosensing.
    Dahlin AB; Wittenberg NJ; Höök F; Oh SH
    Nanophotonics; 2013 Jan; 2(2):83-101. PubMed ID: 24159429
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Label-free plasmonic biosensors for point-of-care diagnostics: a review.
    Soler M; Huertas CS; Lechuga LM
    Expert Rev Mol Diagn; 2019 Jan; 19(1):71-81. PubMed ID: 30513011
    [No Abstract]   [Full Text] [Related]  

  • 8. Single-molecule optofluidic microsensor with interface whispering gallery modes.
    Yu XC; Tang SJ; Liu W; Xu Y; Gong Q; Chen YL; Xiao YF
    Proc Natl Acad Sci U S A; 2022 Feb; 119(6):. PubMed ID: 35115398
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Label-Free Optofluidic Nanobiosensor Enables Real-Time Analysis of Single-Cell Cytokine Secretion.
    Li X; Soler M; Szydzik C; Khoshmanesh K; Schmidt J; Coukos G; Mitchell A; Altug H
    Small; 2018 Jun; 14(26):e1800698. PubMed ID: 29806234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Suspended nanoparticle crystal (S-NPC): A nanofluidics-based, electrical read-out biosensor.
    Lei Y; Xie F; Wang W; Wu W; Li Z
    Lab Chip; 2010 Sep; 10(18):2338-40. PubMed ID: 20544114
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanofluidic crystals: nanofluidics in a close-packed nanoparticle array.
    Ouyang W; Han J; Wang W
    Lab Chip; 2017 Sep; 17(18):3006-3025. PubMed ID: 28752878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrasensitive Label-Free Nanosensing and High-Speed Tracking of Single Proteins.
    Liebel M; Hugall JT; van Hulst NF
    Nano Lett; 2017 Feb; 17(2):1277-1281. PubMed ID: 28088861
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of nanofluidic biochips with nanochannels for applications in DNA analysis.
    Xia D; Yan J; Hou S
    Small; 2012 Sep; 8(18):2787-801. PubMed ID: 22778064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. All-thermoplastic nanoplasmonic microfluidic device for transmission SPR biosensing.
    Malic L; Morton K; Clime L; Veres T
    Lab Chip; 2013 Mar; 13(5):798-810. PubMed ID: 23287840
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advances in Label-Free Detections for Nanofluidic Analytical Devices.
    Le THH; Shimizu H; Morikawa K
    Micromachines (Basel); 2020 Sep; 11(10):. PubMed ID: 32977690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetic nanoparticles in microfluidic and sensing: From transport to detection.
    Khizar S; Ben Halima H; Ahmad NM; Zine N; Errachid A; Elaissari A
    Electrophoresis; 2020 Jul; 41(13-14):1206-1224. PubMed ID: 32347555
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biological small-molecule assays using gradient-based microfluidics.
    Azizi M; Davaji B; Nguyen AV; Mokhtare A; Zhang S; Dogan B; Gibney PA; Simpson KW; Abbaspourrad A
    Biosens Bioelectron; 2021 Apr; 178():113038. PubMed ID: 33556809
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High throughput fabrication of plasmonic nanostructures in nanofluidic pores for biosensing applications.
    Mazzotta F; Höök F; Jonsson MP
    Nanotechnology; 2012 Oct; 23(41):415304. PubMed ID: 23018651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoplasmonic swarm biosensing using single nanoparticle colorimetry.
    Ouyang M; Di Carlo D
    Biosens Bioelectron; 2019 May; 132():162-170. PubMed ID: 30875628
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoprecipitation-Enhanced Sensitivity in Enzymatic Nanofluidic Biosensors.
    Peinetti AS; Cortez ML; Toimil-Molares ME; Azzaroni O
    Anal Chem; 2024 Apr; 96(13):5282-5288. PubMed ID: 38513049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.