These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
613 related articles for article (PubMed ID: 33370114)
1. Triple-Scale Superhydrophobic Surface with Excellent Anti-Icing and Icephobic Performance via Ultrafast Laser Hybrid Fabrication. Pan R; Zhang H; Zhong M ACS Appl Mater Interfaces; 2021 Jan; 13(1):1743-1753. PubMed ID: 33370114 [TBL] [Abstract][Full Text] [Related]
2. Xuan S; Yin H; Li G; Zhang Z; Jiao Y; Liao Z; Li J; Liu S; Wang Y; Tang C; Wu W; Li G; Yin K ACS Nano; 2023 Nov; 17(21):21749-21760. PubMed ID: 37843015 [TBL] [Abstract][Full Text] [Related]
3. Micro-Nano-Nanowire Triple Structure-Held PDMS Superhydrophobic Surfaces for Robust Ultra-Long-Term Icephobic Performance. Chen C; Tian Z; Luo X; Jiang G; Hu X; Wang L; Peng R; Zhang H; Zhong M ACS Appl Mater Interfaces; 2022 May; ():. PubMed ID: 35535994 [TBL] [Abstract][Full Text] [Related]
4. Anti-Icing or Deicing: Icephobicities of Superhydrophobic Surfaces with Hierarchical Structures. Sarshar MA; Song D; Swarctz C; Lee J; Choi CH Langmuir; 2018 Nov; 34(46):13821-13827. PubMed ID: 30360623 [TBL] [Abstract][Full Text] [Related]
5. Superhydrophobic microstructures for better anti-icing performances: open-cell or closed-cell? Wang L; Jiang G; Tian Z; Chen C; Hu X; Peng R; Zhang H; Fan P; Zhong M Mater Horiz; 2023 Jan; 10(1):209-220. PubMed ID: 36349895 [TBL] [Abstract][Full Text] [Related]
6. Icephobic/anti-icing properties of superhydrophobic surfaces. Huang W; Huang J; Guo Z; Liu W Adv Colloid Interface Sci; 2022 Jun; 304():102658. PubMed ID: 35381422 [TBL] [Abstract][Full Text] [Related]
7. Verification of icephobic/anti-icing properties of a superhydrophobic surface. Wang Y; Xue J; Wang Q; Chen Q; Ding J ACS Appl Mater Interfaces; 2013 Apr; 5(8):3370-81. PubMed ID: 23537106 [TBL] [Abstract][Full Text] [Related]
8. Multi-Scale Superhydrophobic Surface with Excellent Stability and Solar-Thermal Performance for Highly Efficient Anti-Icing and Deicing. Zhang F; Yan H; Chen M Small; 2024 Aug; 20(32):e2312226. PubMed ID: 38511539 [TBL] [Abstract][Full Text] [Related]
9. Carbon-Based Photothermal Superhydrophobic Materials with Hierarchical Structure Enhances the Anti-Icing and Photothermal Deicing Properties. Xie Z; Wang H; Geng Y; Li M; Deng Q; Tian Y; Chen R; Zhu X; Liao Q ACS Appl Mater Interfaces; 2021 Oct; 13(40):48308-48321. PubMed ID: 34587444 [TBL] [Abstract][Full Text] [Related]
10. Robust and Superhydrophobic Polydimethylsiloxane/Ni@Ti Chen J; Chen X; Hao Z; Wu Z; Selim MS; Yu J; Huang Y ACS Appl Mater Interfaces; 2024 May; 16(20):26713-26732. PubMed ID: 38723291 [TBL] [Abstract][Full Text] [Related]
11. Crack-Initiated Durable Low-Adhesion Trilayer Icephobic Surfaces with Microcone-Array Anchored Porous Sponges and Polydimethylsiloxane Cover. Chen C; Fan P; Zhu D; Tian Z; Zhao H; Wang L; Peng R; Zhong M ACS Appl Mater Interfaces; 2023 Feb; 15(4):6025-6034. PubMed ID: 36688663 [TBL] [Abstract][Full Text] [Related]
12. Ultralow Icing Adhesion of a Superhydrophobic Coating Based on the Synergistic Effect of Soft and Stiff Particles. Cheng H; Yang G; Li D; Li M; Cao Y; Fu Q; Sun Y Langmuir; 2021 Oct; 37(41):12016-12026. PubMed ID: 34614360 [TBL] [Abstract][Full Text] [Related]
13. One-Step Fabrication of Robust Superhydrophobic Steel Surfaces with Mechanical Durability, Thermal Stability, and Anti-icing Function. Wang H; He M; Liu H; Guan Y ACS Appl Mater Interfaces; 2019 Jul; 11(28):25586-25594. PubMed ID: 31267735 [TBL] [Abstract][Full Text] [Related]
14. Enhancing the Mechanical Durability of Icephobic Surfaces by Introducing Autonomous Self-Healing Function. Zhuo Y; HÃ¥konsen V; He Z; Xiao S; He J; Zhang Z ACS Appl Mater Interfaces; 2018 Apr; 10(14):11972-11978. PubMed ID: 29547258 [TBL] [Abstract][Full Text] [Related]
15. Spraying Fabrication of Durable and Transparent Coatings for Anti-Icing Application: Dynamic Water Repellency, Icing Delay, and Ice Adhesion. Shen Y; Wu Y; Tao J; Zhu C; Chen H; Wu Z; Xie Y ACS Appl Mater Interfaces; 2019 Jan; 11(3):3590-3598. PubMed ID: 30589262 [TBL] [Abstract][Full Text] [Related]
16. Durable and Scalable Candle Soot Icephobic Coating with Nucleation and Fracture Mechanism. Jamil MI; Zhan X; Chen F; Cheng D; Zhang Q ACS Appl Mater Interfaces; 2019 Aug; 11(34):31532-31542. PubMed ID: 31368296 [TBL] [Abstract][Full Text] [Related]
17. Anti-icing potential of superhydrophobic Ti6Al4V surfaces: ice nucleation and growth. Shen Y; Tao J; Tao H; Chen S; Pan L; Wang T Langmuir; 2015 Oct; 31(39):10799-806. PubMed ID: 26367109 [TBL] [Abstract][Full Text] [Related]
18. Reinforced Superhydrophobic Coating on Silicone Rubber for Longstanding Anti-Icing Performance in Severe Conditions. Emelyanenko AM; Boinovich LB; Bezdomnikov AA; Chulkova EV; Emelyanenko KA ACS Appl Mater Interfaces; 2017 Jul; 9(28):24210-24219. PubMed ID: 28657289 [TBL] [Abstract][Full Text] [Related]
19. Superhydrophobic SiC/CNTs Coatings with Photothermal Deicing and Passive Anti-Icing Properties. Jiang G; Chen L; Zhang S; Huang H ACS Appl Mater Interfaces; 2018 Oct; 10(42):36505-36511. PubMed ID: 30273481 [TBL] [Abstract][Full Text] [Related]
20. Rapid fabrication of a dual-scale micro-nanostructured superhydrophobic aluminum surface with delayed condensation and ice formation properties. Barthwal S; Lim SH Soft Matter; 2019 Oct; 15(39):7945-7955. PubMed ID: 31544192 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]