These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 33370305)
1. New features on the survival of human-infective Trypanosoma rangeli in a murine model: Parasite accumulation is observed in lymphoid organs. Ferreira LL; Araújo FF; Martinelli PM; Teixeira-Carvalho A; Alves-Silva J; Guarneri AA PLoS Negl Trop Dis; 2020 Dec; 14(12):e0009015. PubMed ID: 33370305 [TBL] [Abstract][Full Text] [Related]
2. Prevalence, Genetic Characterization, and 18S Small Subunit Ribosomal RNA Diversity of Trypanosoma rangeli in Triatomine and Mammal Hosts in Endemic Areas for Chagas Disease in Ecuador. Ocaña-Mayorga S; Aguirre-Villacis F; Pinto CM; Vallejo GA; Grijalva MJ Vector Borne Zoonotic Dis; 2015 Dec; 15(12):732-42. PubMed ID: 26645579 [TBL] [Abstract][Full Text] [Related]
3. Parasite-mediated interactions within the insect vector: Trypanosoma rangeli strategies. Garcia ES; Castro DP; Figueiredo MB; Azambuja P Parasit Vectors; 2012 May; 5():105. PubMed ID: 22647620 [TBL] [Abstract][Full Text] [Related]
5. Marliére NP; Lorenzo MG; Guarneri AA Parasitology; 2022 Feb; 149(2):155-160. PubMed ID: 35234603 [TBL] [Abstract][Full Text] [Related]
6. [Trypanosoma rangeli parasite-vector-vertebrate interactions and their relationship to the systematics and epidemiology of American trypanosomiasis]. Vallejo GA; Guhl F; Carranza JC; Triana O; Pérez G; Ortiz PA; Marín DH; Villa LM; Suárez J; Sánchez IP; Pulido X; Rodríguez IB; Lozano LE; Urrea DA; Rivera FA; Cuba-Cuba C; Clavijo JA Biomedica; 2007 Jan; 27 Suppl 1():110-8. PubMed ID: 18154251 [TBL] [Abstract][Full Text] [Related]
7. Rhodnius stali: new vector infected by Trypanosoma rangeli (Kinetoplastida, Trypanosomatidae). Castro GVS; Ribeiro MAL; Ramos LJ; Oliveira J; Rosa JAD; Camargo LMA; Meneguetti DUO Rev Soc Bras Med Trop; 2017; 50(6):829-832. PubMed ID: 29340462 [TBL] [Abstract][Full Text] [Related]
8. Effect of temperature and vector nutrition on the development and multiplication of Trypanosoma rangeli in Rhodnius prolixus. Ferreira RC; Teixeira CF; de Sousa VFA; Guarneri AA Parasitol Res; 2018 Jun; 117(6):1737-1744. PubMed ID: 29626223 [TBL] [Abstract][Full Text] [Related]
9. High prevalence of Trypanosoma rangeli and Trypanosoma cruzi in opossums and triatomids in a formerly-endemic area of Chagas disease in Southeast Brazil. Ramirez LE; Lages-Silva E; Alvarenga-Franco F; Matos A; Vargas N; Fernandes O; Zingales B Acta Trop; 2002 Dec; 84(3):189-98. PubMed ID: 12443797 [TBL] [Abstract][Full Text] [Related]
10. Trypanosoma rangeli genotypes association with Rhodnius prolixus and R. pallescens allopatric distribution in Central America. Salazar-Antón F; Urrea DA; Guhl F; Arévalo C; Azofeifa G; Urbina A; Blandón-Naranjo M; Sousa OE; Zeledón R; Vallejo GA Infect Genet Evol; 2009 Dec; 9(6):1306-10. PubMed ID: 19778637 [TBL] [Abstract][Full Text] [Related]
11. Trypanosoma cruzi-Trypanosoma rangeli co-infection ameliorates negative effects of single trypanosome infections in experimentally infected Rhodnius prolixus. Peterson JK; Graham AL; Elliott RJ; Dobson AP; Triana Chávez O Parasitology; 2016 Aug; 143(9):1157-67. PubMed ID: 27174360 [TBL] [Abstract][Full Text] [Related]
12. Modelling triatomine bug population and Trypanosoma rangeli transmission dynamics: Co-feeding, pathogenic effect and linkage with chagas disease. Wu X; Gao D; Song Z; Wu J Math Biosci; 2020 Jun; 324():108326. PubMed ID: 32092467 [TBL] [Abstract][Full Text] [Related]
13. Temperature and parasite life-history are important modulators of the outcome of Trypanosoma rangeli-Rhodnius prolixus interactions. Rodrigues Jde O; Lorenzo MG; Martins-Filho OA; Elliot SL; Guarneri AA Parasitology; 2016 Sep; 143(11):1459-68. PubMed ID: 27460893 [TBL] [Abstract][Full Text] [Related]
14. Genotyping of Trypanosoma cruzi DTUs and Trypanosoma rangeli genetic groups in experimentally infected Rhodnius prolixus by PCR-RFLP. Sá AR; Dias GB; Kimoto KY; Steindel M; Grisard EC; Toledo MJ; Gomes ML Acta Trop; 2016 Apr; 156():115-21. PubMed ID: 26792202 [TBL] [Abstract][Full Text] [Related]
15. A standardizable protocol for infection of Rhodnius prolixus with Trypanosoma rangeli, which mimics natural infections and reveals physiological effects of infection upon the insect. Ferreira LL; Lorenzo MG; Elliot SL; Guarneri AA J Invertebr Pathol; 2010 Sep; 105(1):91-7. PubMed ID: 20546751 [TBL] [Abstract][Full Text] [Related]
16. The interaction between Trypanosoma rangeli and the nitrophorins in the salivary glands of the triatomine Rhodnius prolixus (Hemiptera; Reduviidae). Paim RM; Pereira MH; Araújo RN; Gontijo NF; Guarneri AA Insect Biochem Mol Biol; 2013 Mar; 43(3):229-36. PubMed ID: 23295786 [TBL] [Abstract][Full Text] [Related]
17. Tamandua tetradactyla Linnaeus, 1758 (Myrmecophagidae) and Rhodnius robustus Larrousse, 1927 (Triatominae) infection focus by Trypanosoma rangeli Tejera, 1920 (Trypanosomatidae) in Attalea phalerata Mart. ex Spreng (Arecaceae) palm tree in the Brazilian Amazon. Dias FB; Quartier M; Romaña CA; Diotaiuti L; Harry M Infect Genet Evol; 2010 Dec; 10(8):1278-81. PubMed ID: 20619359 [TBL] [Abstract][Full Text] [Related]
18. What is the 'true' effect of Trypanosoma rangeli on its triatomine bug vector? Peterson JK; Graham AL J Vector Ecol; 2016 Jun; 41(1):27-33. PubMed ID: 27232121 [TBL] [Abstract][Full Text] [Related]
19. Effects of infection by Trypanosoma cruzi and Trypanosoma rangeli on the reproductive performance of the vector Rhodnius prolixus. Fellet MR; Lorenzo MG; Elliot SL; Carrasco D; Guarneri AA PLoS One; 2014; 9(8):e105255. PubMed ID: 25136800 [TBL] [Abstract][Full Text] [Related]
20. Amplification of a specific repetitive DNA sequence for Trypanosoma rangeli identification and its potential application in epidemiological investigations. Vargas N; Souto RP; Carranza JC; Vallejo GA; Zingales B Exp Parasitol; 2000 Nov; 96(3):147-59. PubMed ID: 11162365 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]