BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 33370327)

  • 1. Divergence of photosynthetic strategies amongst marine diatoms.
    Fisher NL; Campbell DA; Hughes DJ; Kuzhiumparambil U; Halsey KH; Ralph PJ; Suggett DJ
    PLoS One; 2020; 15(12):e0244252. PubMed ID: 33370327
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photosystem II photoinactivation, repair, and protection in marine centric diatoms.
    Wu H; Roy S; Alami M; Green BR; Campbell DA
    Plant Physiol; 2012 Sep; 160(1):464-76. PubMed ID: 22829321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinctive photosystem II photoinactivation and protein dynamics in marine diatoms.
    Wu H; Cockshutt AM; McCarthy A; Campbell DA
    Plant Physiol; 2011 Aug; 156(4):2184-95. PubMed ID: 21617029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitrogen starvation induces distinct photosynthetic responses and recovery dynamics in diatoms and prasinophytes.
    Liefer JD; Garg A; Campbell DA; Irwin AJ; Finkel ZV
    PLoS One; 2018; 13(4):e0195705. PubMed ID: 29641594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms that increase the growth efficiency of diatoms in low light.
    Fisher NL; Halsey KH
    Photosynth Res; 2016 Aug; 129(2):183-97. PubMed ID: 27312336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiological responses of the diatoms Thalassiosira weissflogii and Thalassiosira pseudonana to nitrogen starvation and high light.
    Qiao H; Zang S; Yan F; Xu Z; Wang L; Wu H
    Mar Environ Res; 2021 Apr; 166():105276. PubMed ID: 33578138
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of the diadinoxanthin pool size on photoprotection in the marine planktonic diatom Phaeodactylum tricornutum.
    Lavaud J; Rousseau B; van Gorkom HJ; Etienne AL
    Plant Physiol; 2002 Jul; 129(3):1398-406. PubMed ID: 12114593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NADPH-dependent extracellular superoxide production is vital to photophysiology in the marine diatom
    Diaz JM; Plummer S; Hansel CM; Andeer PF; Saito MA; McIlvin MR
    Proc Natl Acad Sci U S A; 2019 Aug; 116(33):16448-16453. PubMed ID: 31346083
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Revealing the architecture of the photosynthetic apparatus in the diatom Thalassiosira pseudonana.
    Arshad R; Calvaruso C; Boekema EJ; Büchel C; Kouřil R
    Plant Physiol; 2021 Aug; 186(4):2124-2136. PubMed ID: 33944951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combined effects of ocean acidification and warming on physiological response of the diatom Thalassiosira pseudonana to light challenges.
    Yuan W; Gao G; Shi Q; Xu Z; Wu H
    Mar Environ Res; 2018 Apr; 135():63-69. PubMed ID: 29397992
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photosynthetic architecture differs in coastal and oceanic diatoms.
    Strzepek RF; Harrison PJ
    Nature; 2004 Oct; 431(7009):689-92. PubMed ID: 15470428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photosystem II protein clearance and FtsH function in the diatom Thalassiosira pseudonana.
    Campbell DA; Hossain Z; Cockshutt AM; Zhaxybayeva O; Wu H; Li G
    Photosynth Res; 2013 May; 115(1):43-54. PubMed ID: 23504483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photosynthetic and molecular responses of the marine diatom Thalassiosira pseudonana to triphenyltin exposure.
    Yi AX; Leung PT; Leung KM
    Aquat Toxicol; 2014 Sep; 154():48-57. PubMed ID: 24858899
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contrasting effects of copper limitation on the photosynthetic apparatus in two strains of the open ocean diatom Thalassiosira oceanica.
    Hippmann AA; Schuback N; Moon KM; McCrow JP; Allen AE; Foster LJ; Green BR; Maldonado MT
    PLoS One; 2017; 12(8):e0181753. PubMed ID: 28837661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison by PAM fluorometry of photosynthetic activity of nine marine phytoplankton grown under identical conditions.
    Juneau P; Harrison PJ
    Photochem Photobiol; 2005; 81(3):649-53. PubMed ID: 15686444
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The nitrogen costs of photosynthesis in a diatom under current and future pCO2.
    Li G; Brown CM; Jeans JA; Donaher NA; McCarthy A; Campbell DA
    New Phytol; 2015 Jan; 205(2):533-43. PubMed ID: 25256155
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conversion of photosystem II dimer to monomers during photoinhibition is tightly coupled with decrease in oxygen-evolving activity in the diatom Chaetoceros gracilis.
    Nagao R; Tomo T; Narikawa R; Enami I; Ikeuchi M
    Photosynth Res; 2016 Dec; 130(1-3):83-91. PubMed ID: 26846772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The molecular response mechanisms of a diatom Thalassiosira pseudonana to the toxicity of BDE-47 based on whole transcriptome analysis.
    Zhao Y; Tang X; Lv M; Liu Q; Li J; Zhang B; Li L; Zhang X; Zhao Y
    Aquat Toxicol; 2020 Dec; 229():105669. PubMed ID: 33142158
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The tolerance of two marine diatoms to diurnal pH fluctuation under dynamic light condition and ocean acidification scenario.
    Shang Y; He J; Qiu J; Hu S; Wang X; Zhang T; Wang W; Yuan X; Xu J; Li F
    Mar Environ Res; 2024 Apr; 196():106425. PubMed ID: 38442592
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photosystem II repair in marine diatoms with contrasting photophysiologies.
    Lavaud J; Six C; Campbell DA
    Photosynth Res; 2016 Feb; 127(2):189-99. PubMed ID: 26156125
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.