BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 33370420)

  • 1. Key interplay between the co-opted sorting nexin-BAR proteins and PI3P phosphoinositide in the formation of the tombusvirus replicase.
    Feng Z; Kovalev N; Nagy PD
    PLoS Pathog; 2020 Dec; 16(12):e1009120. PubMed ID: 33370420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Co-opted Cellular Sac1 Lipid Phosphatase and PI(4)P Phosphoinositide Are Key Host Factors during the Biogenesis of the Tombusvirus Replication Compartment.
    Sasvari Z; Lin W; Inaba JI; Xu K; Kovalev N; Nagy PD
    J Virol; 2020 Jun; 94(12):. PubMed ID: 32269127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reconstitution of an RNA Virus Replicase in Artificial Giant Unilamellar Vesicles Supports Full Replication and Provides Protection for the Double-Stranded RNA Replication Intermediate.
    Kovalev N; Pogany J; Nagy PD
    J Virol; 2020 Aug; 94(18):. PubMed ID: 32641477
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of Viral RNA and Co-opted Cellular ESCRT-I and ESCRT-III Factors in Formation of Tombusvirus Spherules Harboring the Tombusvirus Replicase.
    Kovalev N; de Castro Martín IF; Pogany J; Barajas D; Pathak K; Risco C; Nagy PD
    J Virol; 2016 Jan; 90(7):3611-26. PubMed ID: 26792735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tombusviruses Target a Major Crossroad in the Endocytic and Recycling Pathways via Co-opting Rab7 Small GTPase.
    Feng Z; Inaba JI; Nagy PD
    J Virol; 2021 Oct; 95(21):e0107621. PubMed ID: 34406861
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The retromer is co-opted to deliver lipid enzymes for the biogenesis of lipid-enriched tombusviral replication organelles.
    Feng Z; Inaba JI; Nagy PD
    Proc Natl Acad Sci U S A; 2021 Jan; 118(1):. PubMed ID: 33376201
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of co-opted ESCRT proteins and lipid factors in protection of tombusviral double-stranded RNA replication intermediate against reconstituted RNAi in yeast.
    Kovalev N; Inaba JI; Li Z; Nagy PD
    PLoS Pathog; 2017 Jul; 13(7):e1006520. PubMed ID: 28759634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Noncanonical role for the host Vps4 AAA+ ATPase ESCRT protein in the formation of Tomato bushy stunt virus replicase.
    Barajas D; Martín IF; Pogany J; Risco C; Nagy PD
    PLoS Pathog; 2014 Apr; 10(4):e1004087. PubMed ID: 24763736
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assembly-hub function of ER-localized SNARE proteins in biogenesis of tombusvirus replication compartment.
    Sasvari Z; Kovalev N; Gonzalez PA; Xu K; Nagy PD
    PLoS Pathog; 2018 May; 14(5):e1007028. PubMed ID: 29746582
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recruitment of Vps34 PI3K and enrichment of PI3P phosphoinositide in the viral replication compartment is crucial for replication of a positive-strand RNA virus.
    Feng Z; Xu K; Kovalev N; Nagy PD
    PLoS Pathog; 2019 Jan; 15(1):e1007530. PubMed ID: 30625229
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The proteasomal Rpn11 metalloprotease suppresses tombusvirus RNA recombination and promotes viral replication via facilitating assembly of the viral replicase complex.
    Prasanth KR; Barajas D; Nagy PD
    J Virol; 2015 Mar; 89(5):2750-63. PubMed ID: 25540361
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel mechanism of regulation of tomato bushy stunt virus replication by cellular WW-domain proteins.
    Barajas D; Kovalev N; Qin J; Nagy PD
    J Virol; 2015 Feb; 89(4):2064-79. PubMed ID: 25473045
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Co-opting the fermentation pathway for tombusvirus replication: Compartmentalization of cellular metabolic pathways for rapid ATP generation.
    Lin W; Liu Y; Molho M; Zhang S; Wang L; Xie L; Nagy PD
    PLoS Pathog; 2019 Oct; 15(10):e1008092. PubMed ID: 31648290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The TPR domain in the host Cyp40-like cyclophilin binds to the viral replication protein and inhibits the assembly of the tombusviral replicase.
    Lin JY; Mendu V; Pogany J; Qin J; Nagy PD
    PLoS Pathog; 2012 Feb; 8(2):e1002491. PubMed ID: 22346747
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activation of Tomato Bushy Stunt Virus RNA-Dependent RNA Polymerase by Cellular Heat Shock Protein 70 Is Enhanced by Phospholipids In Vitro.
    Pogany J; Nagy PD
    J Virol; 2015 May; 89(10):5714-23. PubMed ID: 25762742
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cyclophilin A binds to the viral RNA and replication proteins, resulting in inhibition of tombusviral replicase assembly.
    Kovalev N; Nagy PD
    J Virol; 2013 Dec; 87(24):13330-42. PubMed ID: 24089553
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Race against Time between the Virus and Host: Actin-Assisted Rapid Biogenesis of Replication Organelles is Used by TBSV to Limit the Recruitment of Cellular Restriction Factors.
    Molho M; Zhu S; Nagy PD
    J Virol; 2022 Jun; 96(12):e0016821. PubMed ID: 35638821
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Template role of double-stranded RNA in tombusvirus replication.
    Kovalev N; Pogany J; Nagy PD
    J Virol; 2014 May; 88(10):5638-51. PubMed ID: 24600009
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multifunctional role of the co-opted Cdc48 AAA+ ATPase in tombusvirus replication.
    Feng Z; Kovalev N; Nagy PD
    Virology; 2022 Nov; 576():1-17. PubMed ID: 36126429
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Translation elongation factor 1A is a component of the tombusvirus replicase complex and affects the stability of the p33 replication co-factor.
    Li Z; Pogany J; Panavas T; Xu K; Esposito AM; Kinzy TG; Nagy PD
    Virology; 2009 Mar; 385(1):245-60. PubMed ID: 19131084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.