These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 33370622)

  • 1. New-to-nature chemistry from old protein machinery: carbene and nitrene transferases.
    Liu Z; Arnold FH
    Curr Opin Biotechnol; 2021 Jun; 69():43-51. PubMed ID: 33370622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Navigating the Unnatural Reaction Space: Directed Evolution of Heme Proteins for Selective Carbene and Nitrene Transfer.
    Yang Y; Arnold FH
    Acc Chem Res; 2021 Mar; 54(5):1209-1225. PubMed ID: 33491448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploiting and engineering hemoproteins for abiological carbene and nitrene transfer reactions.
    Brandenberg OF; Fasan R; Arnold FH
    Curr Opin Biotechnol; 2017 Oct; 47():102-111. PubMed ID: 28711855
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemoselective Cyclopropanation over Carbene Y-H Insertion Catalyzed by an Engineered Carbene Transferase.
    Moore EJ; Steck V; Bajaj P; Fasan R
    J Org Chem; 2018 Jul; 83(14):7480-7490. PubMed ID: 29905476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Repurposing myoglobin into a carbene transferase for a [2,3]-sigmatropic Sommelet-Hauser rearrangement.
    Pujol M; Degeilh L; Sauty de Chalon T; Réglier M; Simaan AJ; Decroos C
    J Inorg Biochem; 2024 Nov; 260():112688. PubMed ID: 39111220
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Noble-Metal Substitution in Hemoproteins: An Emerging Strategy for Abiological Catalysis.
    Natoli SN; Hartwig JF
    Acc Chem Res; 2019 Feb; 52(2):326-335. PubMed ID: 30693758
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transition Metal-Catalyzed Regioselective Direct C-H Amidation: Interplay between Inner- and Outer-Sphere Pathways for Nitrene Cross-Coupling Reactions.
    Du B; Chan CM; Au CM; Yu WY
    Acc Chem Res; 2022 Aug; 55(15):2123-2137. PubMed ID: 35853135
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The nature of chemical innovation: new enzymes by evolution.
    Arnold FH
    Q Rev Biophys; 2015 Nov; 48(4):404-10. PubMed ID: 26537398
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cyclopropanations via Heme Carbenes: Basic Mechanism and Effects of Carbene Substituent, Protein Axial Ligand, and Porphyrin Substitution.
    Wei Y; Tinoco A; Steck V; Fasan R; Zhang Y
    J Am Chem Soc; 2018 Feb; 140(5):1649-1662. PubMed ID: 29268614
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chiral-at-Ruthenium Catalysts for Nitrene-Mediated Asymmetric C-H Functionalizations.
    Ye CX; Meggers E
    Acc Chem Res; 2023 May; 56(9):1128-1141. PubMed ID: 37071874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elevated catalytic activity of ruthenium(II)-porphyrin-catalyzed carbene/nitrene transfer and insertion reactions with N-heterocyclic carbene ligands.
    Chan KH; Guan X; Lo VK; Che CM
    Angew Chem Int Ed Engl; 2014 Mar; 53(11):2982-7. PubMed ID: 24520042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Directed Evolution of a Cytochrome P450 Carbene Transferase for Selective Functionalization of Cyclic Compounds.
    Brandenberg OF; Chen K; Arnold FH
    J Am Chem Soc; 2019 Jun; 141(22):8989-8995. PubMed ID: 31070908
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of proximal ligand substitutions on the carbene and nitrene transferase activity of myoglobin.
    Moore EJ; Fasan R
    Tetrahedron; 2019 Apr; 75(16):2357-2363. PubMed ID: 31133770
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of three-center/four-electron bonds in superelectrophilic dirhodium carbene and nitrene catalytic intermediates.
    Berry JF
    Dalton Trans; 2012 Jan; 41(3):700-13. PubMed ID: 22042527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strategies for the expression and characterization of artificial myoglobin-based carbene transferases.
    Carminati DM; Moore EJ; Fasan R
    Methods Enzymol; 2020; 644():35-61. PubMed ID: 32943150
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbene Transfer Reactions Catalysed by Dyes of the Metalloporphyrin Group.
    Simões MMQ; Gonzaga DTG; Cardoso MFC; Forezi LDSM; Gomes ATPC; da Silva FC; Ferreira VF; Neves MGPMS; Cavaleiro JAS
    Molecules; 2018 Mar; 23(4):. PubMed ID: 29596367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transition metal-catalysed carbene- and nitrene transfer to carbon monoxide and isocyanides.
    Roose TR; Verdoorn DS; Mampuys P; Ruijter E; Maes BUW; Orru RVA
    Chem Soc Rev; 2022 Jul; 51(14):5842-5877. PubMed ID: 35748338
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Concomitant nitrene and carbene insertion accompanying ring expansion: spectroscopic, X-ray, and computational studies.
    Kaur D; Luk HL; Coldren W; Srinivas PM; Sridhar L; Prabhakar S; Raghunathan P; Guru Row TN; Hadad CM; Platz MS; Eswaran SV
    J Org Chem; 2014 Feb; 79(3):1199-205. PubMed ID: 24410290
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational design of myoglobin-based carbene transferases for monoterpene derivatization.
    Sun Y; Tang Y; Zhou J; Guo B; Yuan F; Yao B; Yu Y; Li C
    Biochem Biophys Res Commun; 2024 Aug; 722():150160. PubMed ID: 38795453
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A non-diazo approach to α-oxo gold carbenes via gold-catalyzed alkyne oxidation.
    Zhang L
    Acc Chem Res; 2014 Mar; 47(3):877-88. PubMed ID: 24428596
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.