BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 33370778)

  • 1. Regulation of glial size by eicosapentaenoic acid through a novel Golgi apparatus mechanism.
    Zhang A; Guan Z; Ockerman K; Dong P; Guo J; Wang Z; Yan D
    PLoS Biol; 2020 Dec; 18(12):e3001051. PubMed ID: 33370778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuron cilia restrain glial KCC-3 to a microdomain to regulate multisensory processing.
    Ray S; Gurung P; Manning RS; Kravchuk AA; Singhvi A
    Cell Rep; 2024 Mar; 43(3):113844. PubMed ID: 38421867
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inactivation of the
    Adir O; Bening-Abu-Shach U; Arbib S; Henis-Korenblit S; Broday L
    Autophagy; 2021 Sep; 17(9):2401-2414. PubMed ID: 32981418
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Glial K/Cl Transporter Controls Neuronal Receptive Ending Shape by Chloride Inhibition of an rGC.
    Singhvi A; Liu B; Friedman CJ; Fong J; Lu Y; Huang XY; Shaham S
    Cell; 2016 May; 165(4):936-48. PubMed ID: 27062922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long chain polyunsaturated fatty acids are required for efficient neurotransmission in C. elegans.
    Lesa GM; Palfreyman M; Hall DH; Clandinin MT; Rudolph C; Jorgensen EM; Schiavo G
    J Cell Sci; 2003 Dec; 116(Pt 24):4965-75. PubMed ID: 14625390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stress-Induced Neural Plasticity Mediated by Glial GPCR REMO-1 Promotes C. elegans Adaptive Behavior.
    Lee IH; Procko C; Lu Y; Shaham S
    Cell Rep; 2021 Jan; 34(2):108607. PubMed ID: 33440160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A glial K(+) /Cl(-) cotransporter modifies temperature-evoked dynamics in Caenorhabditis elegans sensory neurons.
    Yoshida A; Nakano S; Suzuki T; Ihara K; Higashiyama T; Mori I
    Genes Brain Behav; 2016 Apr; 15(4):429-40. PubMed ID: 26463820
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell-type-specific promoters for
    Fung W; Wexler L; Heiman MG
    J Neurogenet; 2020; 34(3-4):335-346. PubMed ID: 32696701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic dissection of polyunsaturated fatty acid synthesis in Caenorhabditis elegans.
    Watts JL; Browse J
    Proc Natl Acad Sci U S A; 2002 Apr; 99(9):5854-9. PubMed ID: 11972048
    [TBL] [Abstract][Full Text] [Related]  

  • 10. IGDB-2, an Ig/FNIII protein, binds the ion channel LGC-34 and controls sensory compartment morphogenesis in C. elegans.
    Wang W; Perens EA; Oikonomou G; Wallace SW; Lu Y; Shaham S
    Dev Biol; 2017 Oct; 430(1):105-112. PubMed ID: 28803967
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Caenorhabditis elegans homologue of Prox1/Prospero is expressed in the glia and is required for sensory behavior and cold tolerance.
    Kage-Nakadai E; Ohta A; Ujisawa T; Sun S; Nishikawa Y; Kuhara A; Mitani S
    Genes Cells; 2016 Sep; 21(9):936-48. PubMed ID: 27402188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo tactile stimulation-evoked responses in Caenorhabditis elegans amphid sheath glia.
    Ding G; Zou W; Zhang H; Xue Y; Cai Y; Huang G; Chen L; Duan S; Kang L
    PLoS One; 2015; 10(2):e0117114. PubMed ID: 25671616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytochrome P450-dependent metabolism of eicosapentaenoic acid in the nematode Caenorhabditis elegans.
    Kulas J; Schmidt C; Rothe M; Schunck WH; Menzel R
    Arch Biochem Biophys; 2008 Apr; 472(1):65-75. PubMed ID: 18282462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional analysis of GS28, an intra-Golgi SNARE, in Caenorhabditis elegans.
    Maekawa M; Inoue T; Kobuna H; Nishimura T; Gengyo-Ando K; Mitani S; Arai H
    Genes Cells; 2009 Aug; 14(8):1003-13. PubMed ID: 19624756
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The many glia of a tiny nematode: studying glial diversity using Caenorhabditis elegans.
    Mizeracka K; Heiman MG
    Wiley Interdiscip Rev Dev Biol; 2015; 4(2):151-60. PubMed ID: 25611728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glial Expression of the Caenorhabditis elegans Gene swip-10 Supports Glutamate Dependent Control of Extrasynaptic Dopamine Signaling.
    Hardaway JA; Sturgeon SM; Snarrenberg CL; Li Z; Xu XZ; Bermingham DP; Odiase P; Spencer WC; Miller DM; Carvelli L; Hardie SL; Blakely RD
    J Neurosci; 2015 Jun; 35(25):9409-23. PubMed ID: 26109664
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dietary eicosapentaenoic acid normalizes hippocampal omega-3 and 6 polyunsaturated fatty acid profile, attenuates glial activation and regulates BDNF function in a rodent model of neuroinflammation induced by central interleukin-1β administration.
    Dong Y; Xu M; Kalueff AV; Song C
    Eur J Nutr; 2018 Aug; 57(5):1781-1791. PubMed ID: 28523372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chaperone complex BAG2-HSC70 regulates localization of Caenorhabditis elegans leucine-rich repeat kinase LRK-1 to the Golgi.
    Fukuzono T; Pastuhov SI; Fukushima O; Li C; Hattori A; Iemura S; Natsume T; Shibuya H; Hanafusa H; Matsumoto K; Hisamoto N
    Genes Cells; 2016 Apr; 21(4):311-24. PubMed ID: 26853528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene and protein expression profiling of the fat-1 mouse brain.
    Ménesi D; Kitajka K; Molnár E; Kis Z; Belleger J; Narce M; Kang JX; Puskás LG; Das UN
    Prostaglandins Leukot Essent Fatty Acids; 2009 Jan; 80(1):33-42. PubMed ID: 19138887
    [TBL] [Abstract][Full Text] [Related]  

  • 20. mls-2 and vab-3 Control glia development, hlh-17/Olig expression and glia-dependent neurite extension in C. elegans.
    Yoshimura S; Murray JI; Lu Y; Waterston RH; Shaham S
    Development; 2008 Jul; 135(13):2263-75. PubMed ID: 18508862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.