These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 33370846)
61. Intracellular Redox-Balance Involvement in Temozolomide Resistance-Related Molecular Mechanisms in Glioblastoma. Lo Dico A; Salvatore D; Martelli C; Ronchi D; Diceglie C; Lucignani G; Ottobrini L Cells; 2019 Oct; 8(11):. PubMed ID: 31653091 [TBL] [Abstract][Full Text] [Related]
62. The sensitivity of glioma cells to pyropheophorbide-αmethyl ester-mediated photodynamic therapy is enhanced by inhibiting ABCG2. Pan L; Lin H; Tian S; Bai D; Kong Y; Yu L Lasers Surg Med; 2017 Sep; 49(7):719-726. PubMed ID: 28370217 [TBL] [Abstract][Full Text] [Related]
63. Development of resistance to photodynamic therapy (PDT) in human breast cancer cells is photosensitizer-dependent: Possible mechanisms and approaches for overcoming PDT-resistance. Olsen CE; Weyergang A; Edwards VT; Berg K; Brech A; Weisheit S; Høgset A; Selbo PK Biochem Pharmacol; 2017 Nov; 144():63-77. PubMed ID: 28784290 [TBL] [Abstract][Full Text] [Related]
64. Hypericin-photodynamic therapy leads to interleukin-6 secretion by HepG2 cells and their apoptosis via recruitment of BH3 interacting-domain death agonist and caspases. Barathan M; Mariappan V; Shankar EM; Abdullah BJ; Goh KL; Vadivelu J Cell Death Dis; 2013 Jun; 4(6):e697. PubMed ID: 23807226 [TBL] [Abstract][Full Text] [Related]
66. Necroptosis: a novel therapeutic target for glioblastoma. Jiang YG; Peng Y; Koussougbo KS Med Hypotheses; 2011 Mar; 76(3):350-2. PubMed ID: 21075544 [TBL] [Abstract][Full Text] [Related]
67. Smart Nanoreactors for pH-Responsive Tumor Homing, Mitochondria-Targeting, and Enhanced Photodynamic-Immunotherapy of Cancer. Yang G; Xu L; Xu J; Zhang R; Song G; Chao Y; Feng L; Han F; Dong Z; Li B; Liu Z Nano Lett; 2018 Apr; 18(4):2475-2484. PubMed ID: 29565139 [TBL] [Abstract][Full Text] [Related]
68. Combined-therapeutic strategies synergistically potentiate glioblastoma multiforme treatment Yang J; Shi Z; Liu R; Wu Y; Zhang X Theranostics; 2020; 10(7):3223-3239. PubMed ID: 32194864 [TBL] [Abstract][Full Text] [Related]
69. Interaction Between Near-Infrared Radiation and Temozolomide in a Glioblastoma Multiform Cell Line: A Treatment Strategy? Marinho MAG; da Silva Marques M; Lettnin AP; de Souza Votto AP; de Moraes Vaz Batista Filgueira D; Horn AP Cell Mol Neurobiol; 2021 Jan; 41(1):91-104. PubMed ID: 32236902 [TBL] [Abstract][Full Text] [Related]
70. Novel applications of diagnostic X-rays in activating a clinical photodynamic drug: Photofrin II through X-ray induced visible luminescence from "rare-earth" formulated particles. Abliz E; Collins JE; Bell H; Tata DB J Xray Sci Technol; 2011; 19(4):521-30. PubMed ID: 25214384 [TBL] [Abstract][Full Text] [Related]
71. Iron metabolism: a double-edged sword in the resistance of glioblastoma to therapies. Legendre C; Garcion E Trends Endocrinol Metab; 2015 Jun; 26(6):322-31. PubMed ID: 25936466 [TBL] [Abstract][Full Text] [Related]
72. Bioinformatics and machine learning methodologies to identify the effects of central nervous system disorders on glioblastoma progression. Rahman MH; Rana HK; Peng S; Hu X; Chen C; Quinn JMW; Moni MA Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33406529 [TBL] [Abstract][Full Text] [Related]
73. Brain tumor stem cells: Molecular characteristics and their impact on therapy. Schonberg DL; Lubelski D; Miller TE; Rich JN Mol Aspects Med; 2014 Oct; 39():82-101. PubMed ID: 23831316 [TBL] [Abstract][Full Text] [Related]
74. Dual roles of nitric oxide in the regulation of tumor cell response and resistance to photodynamic therapy. Rapozzi V; Della Pietra E; Bonavida B Redox Biol; 2015 Dec; 6():311-317. PubMed ID: 26319434 [TBL] [Abstract][Full Text] [Related]
75. Mesenchymal stem cells in glioblastoma therapy and progression: How one cell does it all. Nowak B; Rogujski P; Janowski M; Lukomska B; Andrzejewska A Biochim Biophys Acta Rev Cancer; 2021 Aug; 1876(1):188582. PubMed ID: 34144129 [TBL] [Abstract][Full Text] [Related]
76. Present and Future of Anti-Glioblastoma Therapies: A Deep Look into Molecular Dependencies/Features. Kim HJ; Kim DY Molecules; 2020 Oct; 25(20):. PubMed ID: 33053763 [TBL] [Abstract][Full Text] [Related]
77. Photodynamic therapy using pheophorbide and 670nm LEDs exhibits anti-cancer effects in-vitro in androgen dependent prostate cancer. Gheewala T; Skwor T; Munirathinam G Photodiagnosis Photodyn Ther; 2018 Mar; 21():130-137. PubMed ID: 29102652 [TBL] [Abstract][Full Text] [Related]
78. The role of strong hypoxia in tumors after treatment in the outcome of bacteriochlorin-based photodynamic therapy. Krzykawska-Serda M; Dąbrowski JM; Arnaut LG; Szczygieł M; Urbańska K; Stochel G; Elas M Free Radic Biol Med; 2014 Aug; 73():239-51. PubMed ID: 24835769 [TBL] [Abstract][Full Text] [Related]
79. ROS regulation in gliomas: implications for treatment strategies. Yang YC; Zhu Y; Sun SJ; Zhao CJ; Bai Y; Wang J; Ma LT Front Immunol; 2023; 14():1259797. PubMed ID: 38130720 [TBL] [Abstract][Full Text] [Related]
80. The Importance of Tumor Stem Cells in Glioblastoma Resistance to Therapy. Mattei V; Santilli F; Martellucci S; Delle Monache S; Fabrizi J; Colapietro A; Angelucci A; Festuccia C Int J Mol Sci; 2021 Apr; 22(8):. PubMed ID: 33917954 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]