BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 33371213)

  • 1. Rapid Multianalyte Microfluidic Homogeneous Immunoassay on Electrokinetically Driven Beads.
    Thiriet PE; Medagoda D; Porro G; Guiducci C
    Biosensors (Basel); 2020 Dec; 10(12):. PubMed ID: 33371213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dielectrophoretic microbead sorting using modular electrode design and capillary-driven microfluidics.
    Tirapu-Azpiroz J; Temiz Y; Delamarche E
    Biomed Microdevices; 2017 Oct; 19(4):95. PubMed ID: 29082438
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid microfluidic separation of magnetic beads through dielectrophoresis and magnetophoresis.
    Krishnan JN; Kim C; Park HJ; Kang JY; Kim TS; Kim SK
    Electrophoresis; 2009 May; 30(9):1457-63. PubMed ID: 19425001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bead-based microfluidic immunoassay for diagnosis of Johne's disease.
    Wadhwa A; Foote RS; Shaw RW; Eda S
    J Immunol Methods; 2012 Aug; 382(1-2):196-202. PubMed ID: 22705087
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication and Evaluation of Microfluidic Immunoassay Devices with Antibody-Immobilized Microbeads Retained in Porous Hydrogel Micropillars.
    Kasama T; Kaji N; Tokeshi M; Baba Y
    Methods Mol Biol; 2017; 1547():49-56. PubMed ID: 28044286
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells.
    Wang L; Lu J; Marchenko SA; Monuki ES; Flanagan LA; Lee AP
    Electrophoresis; 2009 Mar; 30(5):782-91. PubMed ID: 19197906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A compact and integrated immunoassay with on-chip dispensing and magnetic particle handling.
    Zirath H; Peham JR; Schnetz G; Coll A; Brandhoff L; Spittler A; Vellekoop MJ; Redl H
    Biomed Microdevices; 2016 Feb; 18(1):16. PubMed ID: 26842948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid, automated, parallel quantitative immunoassays using highly integrated microfluidics and AlphaLISA.
    Yu ZT; Guan H; Cheung MK; McHugh WM; Cornell TT; Shanley TP; Kurabayashi K; Fu J
    Sci Rep; 2015 Jun; 5():11339. PubMed ID: 26074253
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrated electrokinetic magnetic bead-based electrochemical immunoassay on microfluidic chips for reliable control of permitted levels of zearalenone in infant foods.
    Hervás M; López MA; Escarpa A
    Analyst; 2011 May; 136(10):2131-8. PubMed ID: 21394379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On-Chip Magnetic Particle-Based Immunoassays Using Multilaminar Flow for Clinical Diagnostics.
    Tarn MD; Pamme N
    Methods Mol Biol; 2017; 1547():69-83. PubMed ID: 28044288
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An integrated magnetic microfluidic chip for rapid immunodetection of the prostate specific antigen using immunomagnetic beads.
    Feng Z; Zhi S; Guo L; Zhou Y; Lei C
    Mikrochim Acta; 2019 Mar; 186(4):252. PubMed ID: 30903388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On-line protein capture on magnetic beads for ultrasensitive microfluidic immunoassays of cancer biomarkers.
    Otieno BA; Krause CE; Latus A; Chikkaveeraiah BV; Faria RC; Rusling JF
    Biosens Bioelectron; 2014 Mar; 53():268-74. PubMed ID: 24144557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aptamer-based microfluidic beads array sensor for simultaneous detection of multiple analytes employing multienzyme-linked nanoparticle amplification and quantum dots labels.
    Zhang H; Hu X; Fu X
    Biosens Bioelectron; 2014 Jul; 57():22-9. PubMed ID: 24534576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design, fabrication and test of a pneumatically controlled, renewable, microfluidic bead trapping device for sequential injection analysis applications.
    Shao G; Lu D; Fu Z; Du D; Ozanich RM; Wang W; Lin Y
    Analyst; 2016 Jan; 141(1):206-15. PubMed ID: 26566573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic communicating vessel chip for expedited and automated immunomagnetic assays.
    Yang Y; Zeng Y
    Lab Chip; 2018 Dec; 18(24):3830-3839. PubMed ID: 30394473
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescence affinity sensing by using a self-contained fluid manoeuvring microfluidic chip.
    Hong JW; Chung KH; Yoon HC
    Analyst; 2008 Apr; 133(4):499-504. PubMed ID: 18365120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast immobilization of probe beads by dielectrophoresis-controlled adhesion in a versatile microfluidic platform for affinity assay.
    Auerswald J; Widmer D; de Rooij NF; Sigrist A; Staubli T; Stöckli T; Knapp HF
    Electrophoresis; 2005 Oct; 26(19):3697-705. PubMed ID: 16136524
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toward one-step point-of-care immunodiagnostics using capillary-driven microfluidics and PDMS substrates.
    Gervais L; Delamarche E
    Lab Chip; 2009 Dec; 9(23):3330-7. PubMed ID: 19904397
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Superporous agarose beads as a solid support for microfluidic immunoassay.
    Yang Y; Nam SW; Lee NY; Kim YS; Park S
    Ultramicroscopy; 2008 Sep; 108(10):1384-9. PubMed ID: 18550282
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic system for dielectrophoretic separation based on a trapezoidal electrode array.
    Choi S; Park JK
    Lab Chip; 2005 Oct; 5(10):1161-7. PubMed ID: 16175274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.