These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 33371323)
1. Variations in Triterpenoid Deposition in Cuticular Waxes during Development and Maturation of Selected Fruits of Rosaceae Family. Dashbaldan S; Pączkowski C; Szakiel A Int J Mol Sci; 2020 Dec; 21(24):. PubMed ID: 33371323 [TBL] [Abstract][Full Text] [Related]
2. Various Patterns of Composition and Accumulation of Steroids and Triterpenoids in Cuticular Waxes from Screened Ericaceae and Caprifoliaceae Berries during Fruit Development. Dashbaldan S; Becker R; Pączkowski C; Szakiel A Molecules; 2019 Oct; 24(21):. PubMed ID: 31652872 [TBL] [Abstract][Full Text] [Related]
3. Changes in the triterpenoid content of cuticular waxes during fruit ripening of eight grape (Vitis vinifera) cultivars grown in the Upper Rhine Valley. Pensec F; Pączkowski C; Grabarczyk M; Woźniak A; Bénard-Gellon M; Bertsch C; Chong J; Szakiel A J Agric Food Chem; 2014 Aug; 62(32):7998-8007. PubMed ID: 25058466 [TBL] [Abstract][Full Text] [Related]
4. Distribution of Triterpenoids and Steroids in Developing Rugosa Rose ( Dashbaldan S; Rogowska A; Pączkowski C; Szakiel A Molecules; 2021 Aug; 26(17):. PubMed ID: 34500591 [TBL] [Abstract][Full Text] [Related]
5. The developmental pattern of tomato fruit wax accumulation and its impact on cuticular transpiration barrier properties: effects of a deficiency in a beta-ketoacyl-coenzyme A synthase (LeCER6). Leide J; Hildebrandt U; Reussing K; Riederer M; Vogg G Plant Physiol; 2007 Jul; 144(3):1667-79. PubMed ID: 17468214 [TBL] [Abstract][Full Text] [Related]
6. Triterpenoid profile of flower and leaf cuticular waxes of heather Calluna vulgaris. Szakiel A; Niżyński B; Pączkowski C Nat Prod Res; 2013 Aug; 27(15):1404-7. PubMed ID: 23148482 [TBL] [Abstract][Full Text] [Related]
7. Changes in Cuticular Wax Composition of Two Blueberry Cultivars during Fruit Ripening and Postharvest Cold Storage. Chu W; Gao H; Chen H; Wu W; Fang X J Agric Food Chem; 2018 Mar; 66(11):2870-2876. PubMed ID: 29489345 [TBL] [Abstract][Full Text] [Related]
8. Cuticular waxes of nectarines during fruit development in relation to surface conductance and susceptibility to Monilinia laxa. Oliveira Lino L; Quilot-Turion B; Dufour C; Corre MN; Lessire R; Génard M; Poëssel JL J Exp Bot; 2020 Sep; 71(18):5521-5537. PubMed ID: 32556164 [TBL] [Abstract][Full Text] [Related]
9. Triterpenoids of Three Apple Cultivars-Biosynthesis, Antioxidative and Anti-Inflammatory Properties, and Fate during Processing. Woźniak Ł; Szakiel A; Głowacka A; Rozpara E; Marszałek K; Skąpska S Molecules; 2023 Mar; 28(6):. PubMed ID: 36985556 [TBL] [Abstract][Full Text] [Related]
10. McWRI1, a transcription factor of the AP2/SHEN family, regulates the biosynthesis of the cuticular waxes on the apple fruit surface under low temperature. Hao S; Ma Y; Zhao S; Ji Q; Zhang K; Yang M; Yao Y PLoS One; 2017; 12(10):e0186996. PubMed ID: 29073205 [TBL] [Abstract][Full Text] [Related]
12. Cuticular membrane of Fuyu persimmon fruit is strengthened by triterpenoid nano-fillers. Tsubaki S; Sugimura K; Teramoto Y; Yonemori K; Azuma J PLoS One; 2013; 8(9):e75275. PubMed ID: 24086493 [TBL] [Abstract][Full Text] [Related]
13. Comprehensive analysis of KCS gene family in pear reveals the involvement of PbrKCSs in cuticular wax and suberin synthesis and pear fruit skin formation. Zhang J; Zhang C; Li X; Liu ZY; Liu X; Wang CL Plant Mol Biol; 2023 Aug; 112(6):341-356. PubMed ID: 37523053 [TBL] [Abstract][Full Text] [Related]
14. Chemical Composition and Water Permeability of Fruit and Leaf Cuticles of Olea europaea L. Huang H; Burghardt M; Schuster AC; Leide J; Lara I; Riederer M J Agric Food Chem; 2017 Oct; 65(40):8790-8797. PubMed ID: 28880084 [TBL] [Abstract][Full Text] [Related]
15. Developmental pattern of grapevine (Vitis vinifera L.) berry cuticular wax: Differentiation between epicuticular crystals and underlying wax. Arand K; Bieler E; Dürrenberger M; Kassemeyer HH PLoS One; 2021; 16(2):e0246693. PubMed ID: 33606728 [TBL] [Abstract][Full Text] [Related]
16. Low vapor pressure deficit reduces glandular trichome density and modifies the chemical composition of cuticular waxes in silver birch leaves. Lihavainen J; Ahonen V; Keski-Saari S; Sõber A; Oksanen E; Keinänen M Tree Physiol; 2017 Sep; 37(9):1166-1181. PubMed ID: 28460081 [TBL] [Abstract][Full Text] [Related]
17. The positional sterile (ps) mutation affects cuticular transpiration and wax biosynthesis of tomato fruits. Leide J; Hildebrandt U; Vogg G; Riederer M J Plant Physiol; 2011 Jun; 168(9):871-7. PubMed ID: 21242016 [TBL] [Abstract][Full Text] [Related]
18. Transcriptomic and Gas Chromatography-Mass Spectrometry Metabolomic Profiling Analysis of the Epidermis Provides Insights into Cuticular Wax Regulation in Developing 'Yuluxiang' Pear Fruit. Wu X; Shi X; Bai M; Chen Y; Li X; Qi K; Cao P; Li M; Yin H; Zhang S J Agric Food Chem; 2019 Jul; 67(30):8319-8331. PubMed ID: 31287308 [TBL] [Abstract][Full Text] [Related]
19. Fractionation and Characterization of Triterpenoids from Vilkickyte G; Petrikaite V; Marksa M; Ivanauskas L; Jakstas V; Raudone L Antioxidants (Basel); 2023 Feb; 12(2):. PubMed ID: 36830023 [TBL] [Abstract][Full Text] [Related]
20. Fruit cuticular waxes as a source of biologically active triterpenoids. Szakiel A; Pączkowski C; Pensec F; Bertsch C Phytochem Rev; 2012 Jun; 11(2-3):263-284. PubMed ID: 23519009 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]