These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
228 related articles for article (PubMed ID: 33371541)
1. Proteins of Amaranth (Amaranthus spp.), Buckwheat (Fagopyrum spp.), and Quinoa (Chenopodium spp.): A Food Science and Technology Perspective. Janssen F; Pauly A; Rombouts I; Jansens KJA; Deleu LJ; Delcour JA Compr Rev Food Sci Food Saf; 2017 Jan; 16(1):39-58. PubMed ID: 33371541 [TBL] [Abstract][Full Text] [Related]
2. Comparison of the Chemical and Technological Characteristics of Wholemeal Flours Obtained from Amaranth ( De Bock P; Daelemans L; Selis L; Raes K; Vermeir P; Eeckhout M; Van Bockstaele F Foods; 2021 Mar; 10(3):. PubMed ID: 33808595 [TBL] [Abstract][Full Text] [Related]
3. Dietary fiber polysaccharides of amaranth, buckwheat and quinoa grains: A review of chemical structure, biological functions and food uses. Zhu F Carbohydr Polym; 2020 Nov; 248():116819. PubMed ID: 32919544 [TBL] [Abstract][Full Text] [Related]
4. Nutritive value and chemical composition of pseudocereals as gluten-free ingredients. Alvarez-Jubete L; Arendt EK; Gallagher E Int J Food Sci Nutr; 2009; 60 Suppl 4():240-57. PubMed ID: 19462323 [TBL] [Abstract][Full Text] [Related]
5. Proteins from pseudocereal seeds: solubility, extraction, and modifications of the physicochemical and techno-functional properties. Constantino ABT; Garcia-Rojas EE J Sci Food Agric; 2022 May; 102(7):2630-2639. PubMed ID: 34997591 [TBL] [Abstract][Full Text] [Related]
6. Pseudocereals: a novel source of biologically active peptides. Morales D; Miguel M; Garcés-Rimón M Crit Rev Food Sci Nutr; 2021; 61(9):1537-1544. PubMed ID: 32406747 [TBL] [Abstract][Full Text] [Related]
7. Antioxidants of Amaranth, Quinoa and Buckwheat Wholemeals and Heat-Damage Development in Pseudocereal-Enriched Einkorn Water Biscuits. Estivi L; Pellegrino L; Hogenboom JA; Brandolini A; Hidalgo A Molecules; 2022 Nov; 27(21):. PubMed ID: 36364365 [TBL] [Abstract][Full Text] [Related]
8. Pseudocereal grains: Nutritional value, health benefits and current applications for the development of gluten-free foods. Martínez-Villaluenga C; Peñas E; Hernández-Ledesma B Food Chem Toxicol; 2020 Mar; 137():111178. PubMed ID: 32035214 [TBL] [Abstract][Full Text] [Related]
9. [Amaranth grain proteins: prospects for use in specialized food products]. Sidorova YS; Biryulina NA; Zilova IS; Mazo VK Vopr Pitan; 2022; 91(3):96-106. PubMed ID: 35852982 [TBL] [Abstract][Full Text] [Related]
10. Functional properties of gluten-free pasta produced from amaranth, quinoa and buckwheat. Schoenlechner R; Drausinger J; Ottenschlaeger V; Jurackova K; Berghofer E Plant Foods Hum Nutr; 2010 Dec; 65(4):339-49. PubMed ID: 20972627 [TBL] [Abstract][Full Text] [Related]
11. [Amaranth, quinoa and buckwheat grain products: role in human nutrition and maintenance of the intestinal microbiome]. Markova YM; Sidorova YS Vopr Pitan; 2022; 91(6):17-29. PubMed ID: 36648179 [TBL] [Abstract][Full Text] [Related]
12. Protein content and amino acids profile of pseudocereals. Mota C; Santos M; Mauro R; Samman N; Matos AS; Torres D; Castanheira I Food Chem; 2016 Feb; 193():55-61. PubMed ID: 26433287 [TBL] [Abstract][Full Text] [Related]
13. Elaboration of a spontaneous gluten-free sourdough with a mixture of amaranth, buckwheat, and quinoa flours analyzing microbial load, acidity, and pH. Carbó R; Gordún E; Fernández A; Ginovart M Food Sci Technol Int; 2020 Jun; 26(4):344-352. PubMed ID: 31870194 [TBL] [Abstract][Full Text] [Related]
14. Gluten-free breadmaking affected by the particle size and chemical composition of quinoa and buckwheat flour fractions. Sciarini LS; Steffolani ME; Fernández A; Paesani C; Pérez GT Food Sci Technol Int; 2020 Jun; 26(4):321-332. PubMed ID: 31826661 [TBL] [Abstract][Full Text] [Related]
15. Effect of soaking and germination treatments on nutritional, anti-nutritional, and bioactive properties of amaranth ( Thakur P; Kumar K; Ahmed N; Chauhan D; Eain Hyder Rizvi QU; Jan S; Singh TP; Dhaliwal HS Curr Res Food Sci; 2021; 4():917-925. PubMed ID: 34927087 [TBL] [Abstract][Full Text] [Related]
16. In vitro starch digestibility and in vivo glucose response of gluten-free foods and their gluten counterparts. Berti C; Riso P; Monti LD; Porrini M Eur J Nutr; 2004 Aug; 43(4):198-204. PubMed ID: 15309439 [TBL] [Abstract][Full Text] [Related]
17. Lactic Fermentation as a Strategy to Improve the Nutritional and Functional Values of Pseudocereals. Rollán GC; Gerez CL; LeBlanc JG Front Nutr; 2019; 6():98. PubMed ID: 31334241 [TBL] [Abstract][Full Text] [Related]
18. Morphological analysis of the seeds of three pseudocereals by using light microscopy and ESEM-EDS. Ninfali P; Panato A; Bortolotti F; Valentini L; Gobbi P Eur J Histochem; 2020 Jan; 64(1):. PubMed ID: 31941265 [TBL] [Abstract][Full Text] [Related]
19. Defining Amaranth, Buckwheat and Quinoa Flour Levels in Gluten-Free Bread: A Simultaneous Improvement on Physical Properties, Acceptability and Nutrient Composition through Mixture Design. Aguiar EV; Santos FG; Centeno ACLS; Capriles VD Foods; 2022 Mar; 11(6):. PubMed ID: 35327270 [TBL] [Abstract][Full Text] [Related]
20. Steady, dynamic and structural deformation (three interval thixotropy test) characteristics of gluten-free Tarhana soup prepared with different concentrations of quinoa flour. Demir MK; Kutlu G; Yilmaz MT J Texture Stud; 2017 Apr; 48(2):95-102. PubMed ID: 28370110 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]