These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
388 related articles for article (PubMed ID: 33372147)
1. DeepTFactor: A deep learning-based tool for the prediction of transcription factors. Kim GB; Gao Y; Palsson BO; Lee SY Proc Natl Acad Sci U S A; 2021 Jan; 118(2):. PubMed ID: 33372147 [TBL] [Abstract][Full Text] [Related]
2. DeepReg: a deep learning hybrid model for predicting transcription factors in eukaryotic and prokaryotic genomes. Ledesma-Dominguez L; Carbajal-Degante E; Moreno-Hagelsieb G; Pérez-Rueda E Sci Rep; 2024 Apr; 14(1):9155. PubMed ID: 38644393 [TBL] [Abstract][Full Text] [Related]
3. Nonconsensus Protein Binding to Repetitive DNA Sequence Elements Significantly Affects Eukaryotic Genomes. Afek A; Cohen H; Barber-Zucker S; Gordân R; Lukatsky DB PLoS Comput Biol; 2015 Aug; 11(8):e1004429. PubMed ID: 26285121 [TBL] [Abstract][Full Text] [Related]
5. A biophysical model for analysis of transcription factor interaction and binding site arrangement from genome-wide binding data. He X; Chen CC; Hong F; Fang F; Sinha S; Ng HH; Zhong S PLoS One; 2009 Dec; 4(12):e8155. PubMed ID: 19956545 [TBL] [Abstract][Full Text] [Related]
6. A map of direct TF-DNA interactions in the human genome. Gheorghe M; Sandve GK; Khan A; Chèneby J; Ballester B; Mathelier A Nucleic Acids Res; 2019 Feb; 47(4):e21. PubMed ID: 30517703 [TBL] [Abstract][Full Text] [Related]
7. Enhancing the interpretability of transcription factor binding site prediction using attention mechanism. Park S; Koh Y; Jeon H; Kim H; Yeo Y; Kang J Sci Rep; 2020 Aug; 10(1):13413. PubMed ID: 32770026 [TBL] [Abstract][Full Text] [Related]
8. Assessing the model transferability for prediction of transcription factor binding sites based on chromatin accessibility. Liu S; Zibetti C; Wan J; Wang G; Blackshaw S; Qian J BMC Bioinformatics; 2017 Jul; 18(1):355. PubMed ID: 28750606 [TBL] [Abstract][Full Text] [Related]
9. High-resolution transcription factor binding sites prediction improved performance and interpretability by deep learning method. Zhang Y; Wang Z; Zeng Y; Zhou J; Zou Q Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34272562 [TBL] [Abstract][Full Text] [Related]
10. TFregulomeR reveals transcription factors' context-specific features and functions. Lin QXX; Thieffry D; Jha S; Benoukraf T Nucleic Acids Res; 2020 Jan; 48(2):e10. PubMed ID: 31754708 [TBL] [Abstract][Full Text] [Related]
11. Prediction of regulatory motifs from human Chip-sequencing data using a deep learning framework. Yang J; Ma A; Hoppe AD; Wang C; Li Y; Zhang C; Wang Y; Liu B; Ma Q Nucleic Acids Res; 2019 Sep; 47(15):7809-7824. PubMed ID: 31372637 [TBL] [Abstract][Full Text] [Related]
12. DeepD2V: A Novel Deep Learning-Based Framework for Predicting Transcription Factor Binding Sites from Combined DNA Sequence. Deng L; Wu H; Liu X; Liu H Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34073774 [TBL] [Abstract][Full Text] [Related]
13. COPS: detecting co-occurrence and spatial arrangement of transcription factor binding motifs in genome-wide datasets. Ha N; Polychronidou M; Lohmann I PLoS One; 2012; 7(12):e52055. PubMed ID: 23272209 [TBL] [Abstract][Full Text] [Related]
14. Transcription factor-binding k-mer analysis clarifies the cell type dependency of binding specificities and cis-regulatory SNPs in humans. Tahara S; Tsuchiya T; Matsumoto H; Ozaki H BMC Genomics; 2023 Oct; 24(1):597. PubMed ID: 37805453 [TBL] [Abstract][Full Text] [Related]
15. Deciphering the functional diversity of DNA-binding transcription factors in Bacteria and Archaea organisms. Flores-Bautista E; Hernandez-Guerrero R; Huerta-Saquero A; Tenorio-Salgado S; Rivera-Gomez N; Romero A; Ibarra JA; Perez-Rueda E PLoS One; 2020; 15(8):e0237135. PubMed ID: 32822422 [TBL] [Abstract][Full Text] [Related]
16. QBiC-Pred: quantitative predictions of transcription factor binding changes due to sequence variants. Martin V; Zhao J; Afek A; Mielko Z; Gordân R Nucleic Acids Res; 2019 Jul; 47(W1):W127-W135. PubMed ID: 31114870 [TBL] [Abstract][Full Text] [Related]
17. PRISM offers a comprehensive genomic approach to transcription factor function prediction. Wenger AM; Clarke SL; Guturu H; Chen J; Schaar BT; McLean CY; Bejerano G Genome Res; 2013 May; 23(5):889-904. PubMed ID: 23382538 [TBL] [Abstract][Full Text] [Related]
18. De novo prediction of cis-regulatory elements and modules through integrative analysis of a large number of ChIP datasets. Niu M; Tabari ES; Su Z BMC Genomics; 2014 Dec; 15():1047. PubMed ID: 25442502 [TBL] [Abstract][Full Text] [Related]
19. Improved linking of motifs to their TFs using domain information. Baumgarten N; Schmidt F; Schulz MH Bioinformatics; 2020 Mar; 36(6):1655-1662. PubMed ID: 31742324 [TBL] [Abstract][Full Text] [Related]
20. Spatial distribution of predicted transcription factor binding sites in Drosophila ChIP peaks. Pettie KP; Dresch JM; Drewell RA Mech Dev; 2016 Aug; 141():51-61. PubMed ID: 27264535 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]