These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 33372464)

  • 1. [Emission Estimation and Fate Simulation of Dichlorvos in the Dongjiang River Watershed].
    Zhang B; Zhang QQ; Ying GG
    Huan Jing Ke Xue; 2021 Jan; 42(1):127-135. PubMed ID: 33372464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Emission estimation and fate modelling of three typical pesticides in Dongjiang River basin, China.
    Zhang B; Zhang QQ; Zhang SX; Xing C; Ying GG
    Environ Pollut; 2020 Mar; 258():113660. PubMed ID: 31818613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Emission and fate of antibiotics in the Dongjiang River Basin, China: Implication for antibiotic resistance risk.
    Zhang SX; Zhang QQ; Liu YS; Yan XT; Zhang B; Xing C; Zhao JL; Ying GG
    Sci Total Environ; 2020 Apr; 712():136518. PubMed ID: 32050380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temporal-spatial patterns of three types of pesticide loadings in a middle-high latitude agricultural watershed.
    Ouyang W; Cai G; Tysklind M; Yang W; Hao F; Liu H
    Water Res; 2017 Oct; 122():377-386. PubMed ID: 28622630
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coupled modeling using PRZM/RICEWQ and SWAT for the North Tiaoxi Watershed.
    Cheng Y; Zhou J; Liao J; Mao D; Chen W; Shan Z
    Environ Sci Pollut Res Int; 2020 Apr; 27(11):12635-12645. PubMed ID: 32006327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A review of pesticide fate and transport simulation at watershed level using SWAT: Current status and research concerns.
    Wang R; Yuan Y; Yen H; Grieneisen M; Arnold J; Wang D; Wang C; Zhang M
    Sci Total Environ; 2019 Jun; 669():512-526. PubMed ID: 30884273
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Soil and Water Assessment Tool model predictions of annual maximum pesticide concentrations in high vulnerability watersheds.
    Winchell MF; Peranginangin N; Srinivasan R; Chen W
    Integr Environ Assess Manag; 2018 May; 14(3):358-368. PubMed ID: 29193759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pesticide fate at watershed scale: A new framework integrating multimedia behavior with hydrological processes.
    Yan X; Zhang Z; Chen L; Jiao C; Zhu K; Guo J; Pang M; Jin Z; Shen Z
    J Environ Manage; 2022 Oct; 319():115758. PubMed ID: 35982562
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coupling field-scale and watershed models for regulatory modeling of pesticide aquatic exposures in streams.
    Ghebremichael L; Chen W; Jacobson A; Roy C; Perkins DB; Brain R
    Integr Environ Assess Manag; 2022 Nov; 18(6):1678-1693. PubMed ID: 35212130
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of agricultural pesticide inert ingredient transport following modeling approach: Case study of two formulation agents in Sacramento River watershed.
    Tu LH; Grieneisen ML; Wang R; Watanabe H; Zhang M
    J Environ Manage; 2023 Mar; 330():117123. PubMed ID: 36586371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling fate and transport of pesticides from dryland agriculture using SWAT model.
    Dogan FN; Karpuzcu ME
    J Environ Manage; 2023 May; 334():117457. PubMed ID: 36801806
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Verifying the applicability of SWAT to simulate fecal contamination for watershed management of Selangor River, Malaysia.
    Kondo T; Sakai N; Yazawa T; Shimizu Y
    Sci Total Environ; 2021 Jun; 774():145075. PubMed ID: 33609845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrologic and atrazine simulation of the Cedar Creek Watershed using the SWAT model.
    Larose M; Heathman GC; Norton LD; Engel B
    J Environ Qual; 2007; 36(2):521-31. PubMed ID: 17332256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessing controls on selenium fate and transport in watersheds using the SWAT model.
    Neupane P; Bailey RT; Tavakoli-Kivi S
    Sci Total Environ; 2020 Oct; 738():140318. PubMed ID: 32806359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pathogen transport and fate modeling in the Upper Salem River Watershed using SWAT model.
    Niazi M; Obropta C; Miskewitz R
    J Environ Manage; 2015 Mar; 151():167-77. PubMed ID: 25576694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Copula-based exposure risk dynamic simulation of dual heavy metal mixed pollution accidents at the watershed scale.
    Liu J; Liu R; Zhang Z; Zhang H; Cai Y; Yang Z; Kuikka S
    J Environ Manage; 2021 Jan; 277():111481. PubMed ID: 33039701
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Systems Approach to Modeling Watershed Ecohydrology and Pesticide Transport.
    Janney P; Jenkins J
    J Environ Qual; 2019 Jul; 48(4):1047-1056. PubMed ID: 31589676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modelling the fate and transport of Cryptosporidium, a zoonotic and waterborne pathogen, in the Daning River watershed of the Three Gorges Reservoir Region, China.
    Liu W; An W; Jeppesen E; Ma J; Yang M; Trolle D
    J Environ Manage; 2019 Feb; 232():462-474. PubMed ID: 30503897
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Landscape ecological risk assessment and driving factor analysis in Dongjiang river watershed.
    Karimian H; Zou W; Chen Y; Xia J; Wang Z
    Chemosphere; 2022 Nov; 307(Pt 3):135835. PubMed ID: 35964726
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Climate-change influences on the response of macroinvertebrate communities to pesticide contamination in the Sacramento River, California watershed.
    Chiu MC; Hunt L; Resh VH
    Sci Total Environ; 2017 Mar; 581-582():741-749. PubMed ID: 28069310
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.