BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 33372591)

  • 1. intePareto: an R package for integrative analyses of RNA-Seq and ChIP-Seq data.
    Cao Y; Kitanovski S; Hoffmann D
    BMC Genomics; 2020 Dec; 21(Suppl 11):802. PubMed ID: 33372591
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ALGAEFUN with MARACAS, microALGAE FUNctional enrichment tool for MicroAlgae RnA-seq and Chip-seq AnalysiS.
    Romero-Losada AB; Arvanitidou C; de Los Reyes P; García-González M; Romero-Campero FJ
    BMC Bioinformatics; 2022 Mar; 23(1):113. PubMed ID: 35361110
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrative analysis of histone ChIP-seq and transcription data using Bayesian mixture models.
    Klein HU; Schäfer M; Porse BT; Hasemann MS; Ickstadt K; Dugas M
    Bioinformatics; 2014 Apr; 30(8):1154-1162. PubMed ID: 24403540
    [TBL] [Abstract][Full Text] [Related]  

  • 4.
    Zeng J; Li G
    Int J Biol Sci; 2018; 14(12):1724-1731. PubMed ID: 30416387
    [No Abstract]   [Full Text] [Related]  

  • 5. An Integrated Platform for Genome-wide Mapping of Chromatin States Using High-throughput ChIP-sequencing in Tumor Tissues.
    Terranova C; Tang M; Orouji E; Maitituoheti M; Raman A; Amin S; Liu Z; Rai K
    J Vis Exp; 2018 Apr; (134):. PubMed ID: 29683440
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of Myc Chromatin Binding by Calibrated ChIP-Seq Approach.
    Cameron DP; Kuzin V; Baranello L
    Methods Mol Biol; 2021; 2318():161-185. PubMed ID: 34019290
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-Wide Analysis of Yeast Metabolic Cycle through Metabolic Network Models Reveals Superiority of Integrated ATAC-seq Data over RNA-seq Data.
    Cesur MF; Çakır T; Pir P
    mSystems; 2022 Jun; 7(3):e0134721. PubMed ID: 35695574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromatin analyses of Zymoseptoria tritici: Methods for chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq).
    Soyer JL; Möller M; Schotanus K; Connolly LR; Galazka JM; Freitag M; Stukenbrock EH
    Fungal Genet Biol; 2015 Jun; 79():63-70. PubMed ID: 25857259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of RNA decay factor mediated RNA stability contributions on RNA abundance.
    Maekawa S; Imamachi N; Irie T; Tani H; Matsumoto K; Mizutani R; Imamura K; Kakeda M; Yada T; Sugano S; Suzuki Y; Akimitsu N
    BMC Genomics; 2015 Mar; 16(1):154. PubMed ID: 25879614
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comprehensive assessment of differential ChIP-seq tools guides optimal algorithm selection.
    Eder T; Grebien F
    Genome Biol; 2022 May; 23(1):119. PubMed ID: 35606795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A plug and play microfluidic platform for standardized sensitive low-input chromatin immunoprecipitation.
    Dirks RAM; Thomas PC; Wu H; Jones RC; Stunnenberg HG; Marks H
    Genome Res; 2021 May; 31(5):919-933. PubMed ID: 33707229
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel ZNF414 activity characterized by integrative analysis of ChIP-exo, ATAC-seq and RNA-seq data.
    Rodriguez-Martinez A; Vuorinen EM; Shcherban A; Uusi-Mäkelä J; Rajala NKM; Nykter M; Kallioniemi A
    Biochim Biophys Acta Gene Regul Mech; 2022 Apr; 1865(3):194811. PubMed ID: 35318951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrative Analysis of Histone ChIP-seq and RNA-seq Data.
    Klein HU; Schäfer M
    Curr Protoc Hum Genet; 2016 Jul; 90():20.3.1-20.3.16. PubMed ID: 27367165
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single sample sequencing (S3EQ) of epigenome and transcriptome in nucleus accumbens.
    Xu SJ; Heller EA
    J Neurosci Methods; 2018 Oct; 308():62-73. PubMed ID: 30031009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epigenetics and Control of RNAs.
    Maatz H; van Heesch S; Kreuchwig F; Faber A; Adami E; Hubner N; Heinig M
    Methods Mol Biol; 2017; 1488():217-237. PubMed ID: 27933526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CHIPIN: ChIP-seq inter-sample normalization based on signal invariance across transcriptionally constant genes.
    Polit L; Kerdivel G; Gregoricchio S; Esposito M; Guillouf C; Boeva V
    BMC Bioinformatics; 2021 Aug; 22(1):407. PubMed ID: 34404353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Seqinspector: position-based navigation through the ChIP-seq data landscape to identify gene expression regulators.
    Piechota M; Korostynski M; Ficek J; Tomski A; Przewlocki R
    BMC Bioinformatics; 2016 Feb; 17():85. PubMed ID: 26868127
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An integrated ChIP-seq analysis platform with customizable workflows.
    Giannopoulou EG; Elemento O
    BMC Bioinformatics; 2011 Jul; 12():277. PubMed ID: 21736739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of experimental design and computational parameter choices affecting analyses of ChIP-seq and RNA-seq data in undomesticated poplar trees.
    Liu L; Missirian V; Zinkgraf M; Groover A; Filkov V
    BMC Genomics; 2014; 15 Suppl 5(Suppl 5):S3. PubMed ID: 25081589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. BAMscale: quantification of next-generation sequencing peaks and generation of scaled coverage tracks.
    Pongor LS; Gross JM; Vera Alvarez R; Murai J; Jang SM; Zhang H; Redon C; Fu H; Huang SY; Thakur B; Baris A; Marino-Ramirez L; Landsman D; Aladjem MI; Pommier Y
    Epigenetics Chromatin; 2020 Apr; 13(1):21. PubMed ID: 32321568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.