BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 33372655)

  • 1. Circuit and synaptic organization of forebrain-to-midbrain pathways that promote and suppress vocalization.
    Michael V; Goffinet J; Pearson J; Wang F; Tschida K; Mooney R
    Elife; 2020 Dec; 9():. PubMed ID: 33372655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nested circuits mediate the decision to vocalize.
    Xiao S; Michael V; Mooney R
    Elife; 2023 Jun; 12():. PubMed ID: 37314164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Specialized Neural Circuit Gates Social Vocalizations in the Mouse.
    Tschida K; Michael V; Takatoh J; Han BX; Zhao S; Sakurai K; Mooney R; Wang F
    Neuron; 2019 Aug; 103(3):459-472.e4. PubMed ID: 31204083
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Midbrain neurons important for the production of mouse ultrasonic vocalizations are not required for distress calls.
    Ziobro P; Woo Y; He Z; Tschida K
    Curr Biol; 2024 Mar; 34(5):1107-1113.e3. PubMed ID: 38301649
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flexible scaling and persistence of social vocal communication.
    Chen J; Markowitz JE; Lilascharoen V; Taylor S; Sheurpukdi P; Keller JA; Jensen JR; Lim BK; Datta SR; Stowers L
    Nature; 2021 May; 593(7857):108-113. PubMed ID: 33790464
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of Ultrasonic Vocalization-Modulated Neurons in Rat Motor Cortex Based on Their Activity Modulation and Axonal Projection to the Periaqueductal Gray.
    Sharif A; Matsumoto J; Choijiljav C; Badarch A; Setogawa T; Nishijo H; Nishimaru H
    eNeuro; 2024 Apr; 11(4):. PubMed ID: 38490744
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brain stem integration of vocalization: role of the nucleus retroambigualis.
    Zhang SP; Bandler R; Davis PJ
    J Neurophysiol; 1995 Dec; 74(6):2500-12. PubMed ID: 8747209
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Forebrain projection neurons target functionally diverse respiratory control areas in the midbrain, pons, and medulla oblongata.
    Trevizan-Baú P; Dhingra RR; Furuya WI; Stanić D; Mazzone SB; Dutschmann M
    J Comp Neurol; 2021 Jun; 529(9):2243-2264. PubMed ID: 33340092
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Midbrain periaqueductal gray and vocal patterning in a teleost fish.
    Kittelberger JM; Land BR; Bass AH
    J Neurophysiol; 2006 Jul; 96(1):71-85. PubMed ID: 16598068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brain stem integration of vocalization: role of the midbrain periaqueductal gray.
    Zhang SP; Davis PJ; Bandler R; Carrive P
    J Neurophysiol; 1994 Sep; 72(3):1337-56. PubMed ID: 7807216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tauopathy in the periaqueductal gray, kölliker-fuse nucleus and nucleus retroambiguus is not predicted by ultrasonic vocalization in tau-P301L mice.
    Trevizan-Baú P; Dhingra RR; Burrows EL; Dutschmann M; Stanić D
    Behav Brain Res; 2019 Sep; 369():111916. PubMed ID: 31004684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of periaqueductally injected transmitter antagonists on forebrain-elicited vocalization in the squirrel monkey.
    Jürgens U; Lu CL
    Eur J Neurosci; 1993 Jun; 5(6):735-41. PubMed ID: 7903190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monosynaptic projections from the lateral periaqueductal gray to the nucleus retroambiguus in the rhesus monkey: implications for vocalization and reproductive behavior.
    Vanderhorst VG; Terasawa E; Ralston HJ; Holstege G
    J Comp Neurol; 2000 Aug; 424(2):251-68. PubMed ID: 10906701
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Lateral differences in the forebrain and midbrain control of learned vocalizations in adult male Zebra Finch (Taeniopygia guttata)].
    Zeng XY; Li DF
    Dongwuxue Yanjiu; 2013 Feb; 34(1):1-7. PubMed ID: 23389971
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reciprocal connections between the medial preoptic area and the midbrain periaqueductal gray in rat: a WGA-HRP and PHA-L study.
    Rizvi TA; Ennis M; Shipley MT
    J Comp Neurol; 1992 Jan; 315(1):1-15. PubMed ID: 1371779
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Medial Preoptic Area Modulates Courtship Ultrasonic Vocalization in Adult Male Mice.
    Gao SC; Wei YC; Wang SR; Xu XH
    Neurosci Bull; 2019 Aug; 35(4):697-708. PubMed ID: 30900143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Motor organization of positive and negative emotional vocalization in the cat midbrain periaqueductal gray.
    Subramanian HH; Arun M; Silburn PA; Holstege G
    J Comp Neurol; 2016 Jun; 524(8):1540-57. PubMed ID: 26235936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The medial preoptic nucleus of the hypothalamus modulates activity of nitric oxide sensitive neurons in the midbrain periaqueductal gray.
    Hall CW; Behbehani MM
    Brain Res; 1997 Aug; 765(2):208-17. PubMed ID: 9313893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of periaqueductal gray and dorsal raphe nucleus neurons projecting to both the trigeminal sensory complex and forebrain structures: a fluorescent retrograde double-labeling study in the rat.
    Li YQ; Takada M; Matsuzaki S; Shinonaga Y; Mizuno N
    Brain Res; 1993 Oct; 623(2):267-77. PubMed ID: 8221108
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Yin-and-yang bifurcation of opioidergic circuits for descending analgesia at the midbrain of the mouse.
    Kim JH; Gangadharan G; Byun J; Choi EJ; Lee CJ; Shin HS
    Proc Natl Acad Sci U S A; 2018 Oct; 115(43):11078-11083. PubMed ID: 30297409
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.