These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 33372752)

  • 1. Strengthening and Toughening Hierarchical Nanocellulose
    Hou Y; Guan QF; Xia J; Ling ZC; He Z; Han ZM; Yang HB; Gu P; Zhu Y; Yu SH; Wu H
    ACS Nano; 2021 Jan; 15(1):1310-1320. PubMed ID: 33372752
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hierarchical Assembly of Nanocellulose-Based Filaments by Interfacial Complexation.
    Zhang K; Liimatainen H
    Small; 2018 Sep; 14(38):e1801937. PubMed ID: 30151995
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Surface Modification on Water Adsorption and Interfacial Mechanics of Cellulose Nanocrystals.
    Wei Z; Sinko R; Keten S; Luijten E
    ACS Appl Mater Interfaces; 2018 Mar; 10(9):8349-8358. PubMed ID: 29431992
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interfacial Rheology of Charged Anisotropic Cellulose Nanocrystals at the Air-Water Interface.
    Bertsch P; Fischer P
    Langmuir; 2019 Jun; 35(24):7937-7943. PubMed ID: 31090427
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intrinsic kink deformation in nanocellulose.
    Hou Y; He Z; Zhu Y; Wu H
    Carbohydr Polym; 2021 Dec; 273():118578. PubMed ID: 34560982
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Water vapor sorption properties of cellulose nanocrystals and nanofibers using dynamic vapor sorption apparatus.
    Guo X; Wu Y; Xie X
    Sci Rep; 2017 Oct; 7(1):14207. PubMed ID: 29079849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atomic force microscopy characterization of cellulose nanocrystals.
    Lahiji RR; Xu X; Reifenberger R; Raman A; Rudie A; Moon RJ
    Langmuir; 2010 Mar; 26(6):4480-8. PubMed ID: 20055370
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional Materials from Nanocellulose: Utilizing Structure-Property Relationships in Bottom-Up Fabrication.
    De France K; Zeng Z; Wu T; Nyström G
    Adv Mater; 2021 Jul; 33(28):e2000657. PubMed ID: 32267033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Supramolecular Engineering of Hierarchically Self-Assembled, Bioinspired, Cholesteric Nanocomposites Formed by Cellulose Nanocrystals and Polymers.
    Zhu B; Merindol R; Benitez AJ; Wang B; Walther A
    ACS Appl Mater Interfaces; 2016 May; 8(17):11031-40. PubMed ID: 27067311
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlled Environment Neutron Radiography of Moisture Sorption/Desorption in Nanocellulose-Treated Cotton Painting Canvases.
    Bridarolli A; Odlyha M; Burca G; Duncan JC; Akeroyd FA; Church A; Bozec L
    ACS Appl Polym Mater; 2021 Feb; 3(2):777-788. PubMed ID: 33615232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A nanocellulose-based flexible multilayer sensor with high sensitivity to humidity and strain response for detecting human motion and respiration.
    Li X; Xiao S; Lao Y; Li D; Wei Q; Ye L; Lu S
    Int J Biol Macromol; 2024 May; 266(Pt 1):131004. PubMed ID: 38521327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Humidity and multiscale structure govern mechanical properties and deformation modes in films of native cellulose nanofibrils.
    Benítez AJ; Torres-Rendon J; Poutanen M; Walther A
    Biomacromolecules; 2013 Dec; 14(12):4497-506. PubMed ID: 24245557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of nanocellulose interaction with water pollutants using nanocellulose colloidal probes and molecular dynamic simulations.
    Zhu C; Monti S; Mathew AP
    Carbohydr Polym; 2020 Feb; 229():115510. PubMed ID: 31826499
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual Response of Photonic Films with Chiral Nematic Cellulose Nanocrystals: Humidity and Formaldehyde.
    Zhao G; Zhang Y; Zhai S; Sugiyama J; Pan M; Shi J; Lu H
    ACS Appl Mater Interfaces; 2020 Apr; 12(15):17833-17844. PubMed ID: 32212631
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advanced nanocellulose-based gas barrier materials: Present status and prospects.
    Wu Y; Liang Y; Mei C; Cai L; Nadda A; Le QV; Peng Y; Lam SS; Sonne C; Xia C
    Chemosphere; 2022 Jan; 286(Pt 3):131891. PubMed ID: 34416587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strain Engineering of Ion-Coordinated Nanochannels in Nanocellulose.
    Li J; Hou Y; He Z; Wu H; Zhu Y
    Nano Lett; 2024 May; 24(21):6262-6268. PubMed ID: 38743501
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical characteristics of nanocellulose-PEG bionanocomposite wound dressings in wet conditions.
    Sun F; Nordli HR; Pukstad B; Kristofer Gamstedt E; Chinga-Carrasco G
    J Mech Behav Biomed Mater; 2017 May; 69():377-384. PubMed ID: 28171794
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanocellulose in Emulsions and Heterogeneous Water-Based Polymer Systems: A Review.
    Kedzior SA; Gabriel VA; Dubé MA; Cranston ED
    Adv Mater; 2021 Jul; 33(28):e2002404. PubMed ID: 32797718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tuning Glass Transition in Polymer Nanocomposites with Functionalized Cellulose Nanocrystals through Nanoconfinement.
    Qin X; Xia W; Sinko R; Keten S
    Nano Lett; 2015 Oct; 15(10):6738-44. PubMed ID: 26340693
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carboxyl-modified nanocellulose (cNC) enhances the stability of cNC/pullulan bio-nanocomposite hard capsule against moisture variation.
    Ding Y; Zhong B; Yang T; Zhang F; Liu C; Chi Z
    Carbohydr Polym; 2024 Mar; 328():121706. PubMed ID: 38220341
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.