These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 33373034)

  • 1. Dynamic parameter estimation and prediction over consecutive scales, based on moving horizon estimation: applied to an industrial cell culture seed train.
    Hernández Rodríguez T; Posch C; Pörtner R; Frahm B
    Bioprocess Biosyst Eng; 2021 Apr; 44(4):793-808. PubMed ID: 33373034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting industrial-scale cell culture seed trains-A Bayesian framework for model fitting and parameter estimation, dealing with uncertainty in measurements and model parameters, applied to a nonlinear kinetic cell culture model, using an MCMC method.
    Hernández Rodríguez T; Posch C; Schmutzhard J; Stettner J; Weihs C; Pörtner R; Frahm B
    Biotechnol Bioeng; 2019 Nov; 116(11):2944-2959. PubMed ID: 31347693
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Digital Seed Train Twins and Statistical Methods.
    Hernández Rodríguez T; Frahm B
    Adv Biochem Eng Biotechnol; 2021; 176():97-131. PubMed ID: 32797269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design, Optimization, and Adaptive Control of Cell Culture Seed Trains.
    Hernández Rodríguez T; Frahm B
    Methods Mol Biol; 2020; 2095():251-267. PubMed ID: 31858472
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemometrics and in-line near infrared spectroscopic monitoring of a biopharmaceutical Chinese hamster ovary cell culture: prediction of multiple cultivation variables.
    Clavaud M; Roggo Y; Von Daeniken R; Liebler A; Schwabe JO
    Talanta; 2013 Jul; 111():28-38. PubMed ID: 23622522
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Workflow for Target-Oriented Parametrization of an Enhanced Mechanistic Cell Culture Model.
    Ulonska S; Kroll P; Fricke J; Clemens C; Voges R; Müller MM; Herwig C
    Biotechnol J; 2018 Apr; 13(4):e1700395. PubMed ID: 29149549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A systematic approach for scale-down model development and characterization of commercial cell culture processes.
    Li F; Hashimura Y; Pendleton R; Harms J; Collins E; Lee B
    Biotechnol Prog; 2006; 22(3):696-703. PubMed ID: 16739951
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of process conditions for mammalian fed-batch cell culture in automated micro-bioreactor system using genetic algorithm.
    Brinc M; Belič A
    J Biotechnol; 2019 Jul; 300():40-47. PubMed ID: 31071344
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comprehensive, quantitative bioprocess productivity monitoring using fluorescence EEM spectroscopy and chemometrics.
    Li B; Shanahan M; Calvet A; Leister KJ; Ryder AG
    Analyst; 2014 Apr; 139(7):1661-71. PubMed ID: 24504094
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A robust feeding strategy to maintain set-point glucose in mammalian fed-batch cultures when input parameters have a large error.
    Konakovsky V; Clemens C; Müller MM; Bechmann J; Herwig C
    Biotechnol Prog; 2017 Mar; 33(2):317-336. PubMed ID: 28127895
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioprocess control from a multivariate process trajectory.
    Cimander C; Mandenius CF
    Bioprocess Biosyst Eng; 2004 Dec; 26(6):401-11. PubMed ID: 13680336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robust parameter estimation during logistic modeling of batch and fed-batch culture kinetics.
    Goudar CT; Konstantinov KB; Piret JM
    Biotechnol Prog; 2009; 25(3):801-6. PubMed ID: 19496143
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioprocess optimization under uncertainty using ensemble modeling.
    Liu Y; Gunawan R
    J Biotechnol; 2017 Feb; 244():34-44. PubMed ID: 28137617
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fault detection and diagnosis in an industrial fed-batch cell culture process.
    Gunther JC; Conner JS; Seborg DE
    Biotechnol Prog; 2007; 23(4):851-7. PubMed ID: 17672519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monitoring and control of Gluconacetobacter xylinus fed-batch cultures using in situ mid-IR spectroscopy.
    Kornmann H; Valentinotti S; Duboc P; Marison I; von Stockar U
    J Biotechnol; 2004 Sep; 113(1-3):231-45. PubMed ID: 15380658
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a soft-sensor based on multi-wavelength fluorescence spectroscopy and a dynamic metabolic model for monitoring mammalian cell cultures.
    Ohadi K; Legge RL; Budman HM
    Biotechnol Bioeng; 2015 Jan; 112(1):197-208. PubMed ID: 25065633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimation of Process Model Parameters.
    Deppe S; Frahm B; Hass VC; Hernández Rodríguez T; Kuchemüller KB; Möller J; Pörtner R
    Methods Mol Biol; 2020; 2095():213-234. PubMed ID: 31858470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The development of an industrial-scale fed-batch fermentation simulation.
    Goldrick S; Ştefan A; Lovett D; Montague G; Lennox B
    J Biotechnol; 2015 Jan; 193():70-82. PubMed ID: 25449107
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Single Dynamic Metabolic Model Can Describe mAb Producing CHO Cell Batch and Fed-Batch Cultures on Different Culture Media.
    Robitaille J; Chen J; Jolicoeur M
    PLoS One; 2015; 10(9):e0136815. PubMed ID: 26331955
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using a Parallel Micro-Cultivation System (Micro-Matrix) as a Process Development Tool for Cell Culture Applications.
    Wiegmann V; Martinez CB; Baganz F
    Methods Mol Biol; 2020; 2095():69-81. PubMed ID: 31858463
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.