BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 33373230)

  • 21. Biological Response to Carbon-Family Nanomaterials: Interactions at the Nano-Bio Interface.
    Rahmati M; Mozafari M
    Front Bioeng Biotechnol; 2019; 7():4. PubMed ID: 30729107
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In silico bioactivity prediction of proteins interacting with graphene-based nanomaterials guides rational design of biosensor.
    Ye J; Fan M; Zhan J; Zhang X; Lu S; Chai M; Zhang Y; Zhao X; Li S; Zhang D
    Talanta; 2024 Jun; 277():126397. PubMed ID: 38865956
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Graphene, carbon nanotubes, zinc oxide and gold as elite nanomaterials for fabrication of biosensors for healthcare.
    Kumar S; Ahlawat W; Kumar R; Dilbaghi N
    Biosens Bioelectron; 2015 Aug; 70():498-503. PubMed ID: 25899923
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The influence of the concentration and adsorption sites of different chemical groups on graphene through first principles simulations.
    Tonel MZ; Lara IV; Zanella I; Fagan SB
    Phys Chem Chem Phys; 2017 Oct; 19(40):27374-27383. PubMed ID: 28972620
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Density functional theory calculations and molecular dynamics simulations of the adsorption of biomolecules on graphene surfaces.
    Qin W; Li X; Bian WW; Fan XJ; Qi JY
    Biomaterials; 2010 Feb; 31(5):1007-16. PubMed ID: 19880174
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biological interactions of graphene-family nanomaterials: an interdisciplinary review.
    Sanchez VC; Jachak A; Hurt RH; Kane AB
    Chem Res Toxicol; 2012 Jan; 25(1):15-34. PubMed ID: 21954945
    [TBL] [Abstract][Full Text] [Related]  

  • 27. How do proteins 'response' to common carbon nanomaterials?
    Wang X; Zhu Y; Chen M; Yan M; Zeng G; Huang D
    Adv Colloid Interface Sci; 2019 Aug; 270():101-107. PubMed ID: 31200262
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Highly selective covalent organic functionalization of epitaxial graphene.
    Bueno RA; Martínez JI; Luccas RF; Del Árbol NR; Munuera C; Palacio I; Palomares FJ; Lauwaet K; Thakur S; Baranowski JM; Strupinski W; López MF; Mompean F; García-Hernández M; Martín-Gago JA
    Nat Commun; 2017 May; 8():15306. PubMed ID: 28480884
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Adsorption of a wide variety of antibiotics on graphene-based nanomaterials: A modelling study.
    Kern M; Škulj S; Rožman M
    Chemosphere; 2022 Jun; 296():134010. PubMed ID: 35181425
    [TBL] [Abstract][Full Text] [Related]  

  • 30. SO
    Babu DJ; Puthusseri D; Kühl FG; Okeil S; Bruns M; Hampe M; Schneider JJ
    Beilstein J Nanotechnol; 2018; 9():1782-1792. PubMed ID: 29977711
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High surface adsorption properties of carbon-based nanomaterials are responsible for mortality, swimming inhibition, and biochemical responses in Artemia salina larvae.
    Mesarič T; Gambardella C; Milivojević T; Faimali M; Drobne D; Falugi C; Makovec D; Jemec A; Sepčić K
    Aquat Toxicol; 2015 Jun; 163():121-9. PubMed ID: 25889088
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Recent advances in the use of graphene for sample preparation].
    Feng J; Sun M; Feng Y; Xin X; Ding Y; Sun M
    Se Pu; 2022 Nov; 40(11):953-965. PubMed ID: 36351804
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Yin and Yang of carbon nanomaterials in atherosclerosis.
    Rezaee M; Behnam B; Banach M; Sahebkar A
    Biotechnol Adv; 2018 Dec; 36(8):2232-2247. PubMed ID: 30342084
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interactions at the silica-peptide interface: the influence of particle size and surface functionality.
    Puddu V; Perry CC
    Langmuir; 2014 Jan; 30(1):227-33. PubMed ID: 24328428
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Photo-Responsive Graphene and Carbon Nanotubes to Control and Tackle Biological Systems.
    Cardano F; Frasconi M; Giordani S
    Front Chem; 2018; 6():102. PubMed ID: 29707534
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Adsorption of Estrogen Contaminants by Graphene Nanomaterials under Natural Organic Matter Preloading: Comparison to Carbon Nanotube, Biochar, and Activated Carbon.
    Jiang L; Liu Y; Liu S; Zeng G; Hu X; Hu X; Guo Z; Tan X; Wang L; Wu Z
    Environ Sci Technol; 2017 Jun; 51(11):6352-6359. PubMed ID: 28494154
    [TBL] [Abstract][Full Text] [Related]  

  • 37. MWCNT interactions with protein: surface-induced changes in protein adsorption and the impact of protein corona on cellular uptake and cytotoxicity.
    Zhang T; Tang M; Yao Y; Ma Y; Pu Y
    Int J Nanomedicine; 2019; 14():993-1009. PubMed ID: 30799918
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synthesis of Highly-Dispersed Graphene Oxide Nanoribbons-Functionalized Carbon Nanotubes-Graphene Oxide (GNFG) Complex and Its Application in Enhancing the Mechanical Properties of Cementitious Composites.
    Li P; Liu J; Her S; Zal Nezhad E; Lim S; Bae S
    Nanomaterials (Basel); 2021 Jun; 11(7):. PubMed ID: 34201941
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electronic-property dependent interactions between tetracycline and graphene nanomaterials in aqueous solution.
    He L; Liu FF; Zhao M; Qi Z; Sun X; Afzal MZ; Sun X; Li Y; Hao J; Wang S
    J Environ Sci (China); 2018 Apr; 66():286-294. PubMed ID: 29628096
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from aqueous solutions: A critical review.
    Yang X; Wan Y; Zheng Y; He F; Yu Z; Huang J; Wang H; Ok YS; Jiang Y; Gao B
    Chem Eng J; 2019 Feb; 366():608-621. PubMed ID: 34522159
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.