These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 33373232)

  • 1. Liquid-Liquid Phase Separation of Peptide/Oligonucleotide Complexes in Crowded Macromolecular Media.
    Bai Q; Zhang Q; Jing H; Chen J; Liang D
    J Phys Chem B; 2021 Jan; 125(1):49-57. PubMed ID: 33373232
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crowded Environment Regulates the Coacervation of Biopolymers via Nonspecific Interactions.
    Bai Q; Liu Z; Chen J; Liang D
    Biomacromolecules; 2023 Jan; 24(1):283-293. PubMed ID: 36511362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding the Impacts of Molecular and Macromolecular Crowding Agents on Protein-Polymer Complex Coacervates.
    Biswas S; Hecht AL; Noble SA; Huang Q; Gillilan RE; Xu AY
    Biomacromolecules; 2023 Nov; 24(11):4771-4782. PubMed ID: 37815312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Morphology and Dynamics of Coexisting Phases in Coacervate Solely Controlled by Crowded Environment.
    Bai Q; Chen X; Chen J; Liu Z; Lin YN; Yang S; Liang D
    ACS Macro Lett; 2022 Sep; 11(9):1107-1111. PubMed ID: 36006377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Practical considerations for generation of multi-compartment complex coacervates.
    Mountain GA; Keating CD
    Methods Enzymol; 2021; 646():115-142. PubMed ID: 33453923
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oligonucleotide-Peptide Complexes: Phase Control by Hybridization.
    Vieregg JR; Lueckheide M; Marciel AB; Leon L; Bologna AJ; Rivera JR; Tirrell MV
    J Am Chem Soc; 2018 Feb; 140(5):1632-1638. PubMed ID: 29314832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure of Liquid Coacervates formed by Oppositely Charged Polyelectrolytes.
    Rubinstein M; Liao Q; Panyukov S
    Macromolecules; 2018 Dec; 51(23):9572-9588. PubMed ID: 30853717
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase Separation Behavior of Supercharged Proteins and Polyelectrolytes.
    Cummings CS; Obermeyer AC
    Biochemistry; 2018 Jan; 57(3):314-323. PubMed ID: 29210575
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzymatic control over coacervation.
    Nakashima KK; André AAM; Spruijt E
    Methods Enzymol; 2021; 646():353-389. PubMed ID: 33453932
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of macromolecular crowding on RNA/spermine complex coacervation and oligonucleotide compartmentalization.
    Marianelli AM; Miller BM; Keating CD
    Soft Matter; 2018 Jan; 14(3):368-378. PubMed ID: 29265152
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fission and Internal Fusion of Protocell with Membraneless "Organelles" Formed by Liquid-Liquid Phase Separation.
    Jing H; Bai Q; Lin Y; Chang H; Yin D; Liang D
    Langmuir; 2020 Jul; 36(27):8017-8026. PubMed ID: 32584581
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coacervation between Two Positively Charged Poly(ionic liquid)s.
    Zhang C; Cai Y; Zhao Q
    Macromol Rapid Commun; 2022 Sep; 43(18):e2200191. PubMed ID: 35632991
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation of Multiphase Complex Coacervates and Partitioning of Biomolecules within them.
    Mountain GA; Keating CD
    Biomacromolecules; 2020 Feb; 21(2):630-640. PubMed ID: 31743027
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complex coacervates as artificial membraneless organelles and protocells.
    Deng NN
    Biomicrofluidics; 2020 Sep; 14(5):051301. PubMed ID: 32922586
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic Coupling in Unentangled Liquid Coacervates Formed by Oppositely Charged Polyelectrolytes.
    Aponte-Rivera C; Rubinstein M
    Macromolecules; 2021 Feb; 54(4):1783-1800. PubMed ID: 33981120
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphorylation-mediated RNA/peptide complex coacervation as a model for intracellular liquid organelles.
    Aumiller WM; Keating CD
    Nat Chem; 2016 Feb; 8(2):129-37. PubMed ID: 26791895
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ionic polypeptide tags for protein phase separation.
    Kapelner RA; Obermeyer AC
    Chem Sci; 2019 Mar; 10(9):2700-2707. PubMed ID: 30996987
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthetic Membraneless Droplets for Synaptic-Like Clustering of Lipid Vesicles.
    Li Q; Song Q; Guo W; Cao Y; Cui X; Chen D; Shum HC
    Angew Chem Int Ed Engl; 2023 Nov; 62(45):e202313096. PubMed ID: 37728515
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature-Responsive Peptide-Nucleotide Coacervates.
    Lu T; Nakashima KK; Spruijt E
    J Phys Chem B; 2021 Apr; 125(12):3080-3091. PubMed ID: 33757284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reversible photocontrol of DNA coacervation.
    Lafon S; Martin N
    Methods Enzymol; 2021; 646():329-351. PubMed ID: 33453931
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.