BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 33373308)

  • 1. The Current Research of Combining Multi-Modal Brain-Computer Interfaces With Virtual Reality.
    Wen D; Liang B; Zhou Y; Chen H; Jung TP
    IEEE J Biomed Health Inform; 2021 Sep; 25(9):3278-3287. PubMed ID: 33373308
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combining brain-computer interface and virtual reality for rehabilitation in neurological diseases: A narrative review.
    Wen D; Fan Y; Hsu SH; Xu J; Zhou Y; Tao J; Lan X; Li F
    Ann Phys Rehabil Med; 2021 Jan; 64(1):101404. PubMed ID: 32561504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A multi-modal modified feedback self-paced BCI to control the gait of an avatar.
    Alchalabi B; Faubert J; Labbé DR
    J Neural Eng; 2021 Apr; 18(5):. PubMed ID: 33711832
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gait adaptation to visual kinematic perturbations using a real-time closed-loop brain-computer interface to a virtual reality avatar.
    Luu TP; He Y; Brown S; Nakagame S; Contreras-Vidal JL
    J Neural Eng; 2016 Jun; 13(3):036006. PubMed ID: 27064824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Systematic Review of Virtual Reality and Robot Therapy as Recent Rehabilitation Technologies Using EEG-Brain-Computer Interface Based on Movement-Related Cortical Potentials.
    Said RR; Heyat MBB; Song K; Tian C; Wu Z
    Biosensors (Basel); 2022 Dec; 12(12):. PubMed ID: 36551100
    [TBL] [Abstract][Full Text] [Related]  

  • 6. P300 Brain-Computer Interface-Based Drone Control in Virtual and Augmented Reality.
    Kim S; Lee S; Kang H; Kim S; Ahn M
    Sensors (Basel); 2021 Aug; 21(17):. PubMed ID: 34502655
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Motor priming in virtual reality can augment motor-imagery training efficacy in restorative brain-computer interaction: a within-subject analysis.
    Vourvopoulos A; Bermúdez I Badia S
    J Neuroeng Rehabil; 2016 Aug; 13(1):69. PubMed ID: 27503007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Embodiment Is Related to Better Performance on a Brain-Computer Interface in Immersive Virtual Reality: A Pilot Study.
    Juliano JM; Spicer RP; Vourvopoulos A; Lefebvre S; Jann K; Ard T; Santarnecchi E; Krum DM; Liew SL
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32098317
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel Hybrid Brain-Computer Interface for Virtual Reality Applications Using Steady-State Visual-Evoked Potential-Based Brain-Computer Interface and Electrooculogram-Based Eye Tracking for Increased Information Transfer Rate.
    Ha J; Park S; Im CH
    Front Neuroinform; 2022; 16():758537. PubMed ID: 35281718
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of 3D paradigm synchronous motion for SSVEP-based hybrid BCI-VR system.
    Niu L; Bin J; Wang JKS; Zhan G; Jia J; Zhang L; Gan Z; Kang X
    Med Biol Eng Comput; 2023 Sep; 61(9):2481-2495. PubMed ID: 37191865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Upper-Limb Rehabilitation Exoskeleton System Controlled by MI Recognition Model With Deep Emphasized Informative Features in a VR Scene.
    Tang Z; Wang H; Cui Z; Jin X; Zhang L; Peng Y; Xing B
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():4390-4401. PubMed ID: 37910412
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robotic and Virtual Reality BCIs Using Spatial Tactile and Auditory Oddball Paradigms.
    Rutkowski TM
    Front Neurorobot; 2016; 10():20. PubMed ID: 27999538
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-Time Navigation in Google Street View
    Yang L; Van Hulle MM
    Sensors (Basel); 2023 Feb; 23(3):. PubMed ID: 36772744
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brain-computer interfaces and virtual reality for neurorehabilitation.
    Leeb R; Pérez-Marcos D
    Handb Clin Neurol; 2020; 168():183-197. PubMed ID: 32164852
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brain-computer interface users speak up: the Virtual Users' Forum at the 2013 International Brain-Computer Interface Meeting.
    Peters B; Bieker G; Heckman SM; Huggins JE; Wolf C; Zeitlin D; Fried-Oken M
    Arch Phys Med Rehabil; 2015 Mar; 96(3 Suppl):S33-7. PubMed ID: 25721545
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Affective Interaction System using Virtual Reality and Brain-Computer Interface.
    Chin ZY; Zhang Z; Wang C; Ang KK
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6183-6186. PubMed ID: 34892528
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of BCI systems in neurorehabilitation: a scoping review.
    Bamdad M; Zarshenas H; Auais MA
    Disabil Rehabil Assist Technol; 2015; 10(5):355-64. PubMed ID: 25560222
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of Visual Stimuli for Steady-State Visual Evoked Potential-Based Brain-Computer Interfaces in Virtual Reality Environment in terms of Classification Accuracy and Visual Comfort.
    Choi KM; Park S; Im CH
    Comput Intell Neurosci; 2019; 2019():9680697. PubMed ID: 31354804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A hybrid brain computer interface to control the direction and speed of a simulated or real wheelchair.
    Long J; Li Y; Wang H; Yu T; Pan J; Li F
    IEEE Trans Neural Syst Rehabil Eng; 2012 Sep; 20(5):720-9. PubMed ID: 22692936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. VR-enabled portable brain-computer interfaces via wireless soft bioelectronics.
    Mahmood M; Kim N; Mahmood M; Kim H; Kim H; Rodeheaver N; Sang M; Yu KJ; Yeo WH
    Biosens Bioelectron; 2022 Aug; 210():114333. PubMed ID: 35525171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.