BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

586 related articles for article (PubMed ID: 33373432)

  • 21. Interaction between gut microbiome and cardiovascular disease.
    Peng J; Xiao X; Hu M; Zhang X
    Life Sci; 2018 Dec; 214():153-157. PubMed ID: 30385177
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Gut Microbiota Affects Host Pathophysiology as an Endocrine Organ: A Focus on Cardiovascular Disease.
    Busnelli M; Manzini S; Chiesa G
    Nutrients; 2019 Dec; 12(1):. PubMed ID: 31892152
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The microbiome and its pharmacological targets: therapeutic avenues in cardiometabolic diseases.
    Neves AL; Chilloux J; Sarafian MH; Rahim MB; Boulangé CL; Dumas ME
    Curr Opin Pharmacol; 2015 Dec; 25():36-44. PubMed ID: 26531326
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Diet-induced metabolic changes of the human gut microbiome: importance of short-chain fatty acids, methylamines and indoles.
    Abdul Rahim MBH; Chilloux J; Martinez-Gili L; Neves AL; Myridakis A; Gooderham N; Dumas ME
    Acta Diabetol; 2019 May; 56(5):493-500. PubMed ID: 30903435
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A specific gut microbiota and metabolomic profiles shifts related to antidiabetic action: The similar and complementary antidiabetic properties of type 3 resistant starch from Canna edulis and metformin.
    Zhang C; Ma S; Wu J; Luo L; Qiao S; Li R; Xu W; Wang N; Zhao B; Wang X; Zhang Y; Wang X
    Pharmacol Res; 2020 Sep; 159():104985. PubMed ID: 32504839
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The role of microbial amino acid metabolism in host metabolism.
    Neis EP; Dejong CH; Rensen SS
    Nutrients; 2015 Apr; 7(4):2930-46. PubMed ID: 25894657
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gut microbiota and microbiota-derived metabolites in cardiovascular diseases.
    Chen X; Zhang H; Ren S; Ding Y; Remex NS; Bhuiyan MS; Qu J; Tang X
    Chin Med J (Engl); 2023 Oct; 136(19):2269-2284. PubMed ID: 37442759
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Contributory Role of Gut Microbiota and Their Metabolites Toward Cardiovascular Complications in Chronic Kidney Disease.
    Li DY; Tang WHW
    Semin Nephrol; 2018 Mar; 38(2):193-205. PubMed ID: 29602401
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Gut microbiota: A new target for T2DM prevention and treatment.
    Liu L; Zhang J; Cheng Y; Zhu M; Xiao Z; Ruan G; Wei Y
    Front Endocrinol (Lausanne); 2022; 13():958218. PubMed ID: 36034447
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Xenometabolite signatures in the UC Davis type 2 diabetes mellitus rat model revealed using a metabolomics platform enriched with microbe-derived metabolites.
    Mercer KE; Yeruva L; Pack L; Graham JL; Stanhope KL; Chintapalli SV; Wankhade UD; Shankar K; Havel PJ; Adams SH; Piccolo BD
    Am J Physiol Gastrointest Liver Physiol; 2020 Aug; 319(2):G157-G169. PubMed ID: 32508155
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Gut Microbiota and Type 2 Diabetes Mellitus: Association, Mechanism, and Translational Applications.
    Zhang L; Chu J; Hao W; Zhang J; Li H; Yang C; Yang J; Chen X; Wang H
    Mediators Inflamm; 2021; 2021():5110276. PubMed ID: 34447287
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Gut microbiota and metabolites in the pathogenesis of endocrine disease.
    Fenneman AC; Rampanelli E; Yin YS; Ames J; Blaser MJ; Fliers E; Nieuwdorp M
    Biochem Soc Trans; 2020 Jun; 48(3):915-931. PubMed ID: 32412045
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Peripheral and central regulation of insulin by the intestine and microbiome.
    Schertzer JD; Lam TKT
    Am J Physiol Endocrinol Metab; 2021 Feb; 320(2):E234-E239. PubMed ID: 33308015
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular interactions between the intestinal microbiota and the host.
    Hertli S; Zimmermann P
    Mol Microbiol; 2022 Jun; 117(6):1297-1307. PubMed ID: 35403275
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Systematic assessment of secondary bile acid metabolism in gut microbes reveals distinct metabolic capabilities in inflammatory bowel disease.
    Heinken A; Ravcheev DA; Baldini F; Heirendt L; Fleming RMT; Thiele I
    Microbiome; 2019 May; 7(1):75. PubMed ID: 31092280
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Short-chain fatty acids, secondary bile acids and indoles: gut microbial metabolites with effects on enteroendocrine cell function and their potential as therapies for metabolic disease.
    Masse KE; Lu VB
    Front Endocrinol (Lausanne); 2023; 14():1169624. PubMed ID: 37560311
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Roles of Gut Microbial Metabolites in Diabetic Kidney Disease.
    Fang Q; Liu N; Zheng B; Guo F; Zeng X; Huang X; Ouyang D
    Front Endocrinol (Lausanne); 2021; 12():636175. PubMed ID: 34093430
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Gut Microbial Metabolites and Blood Pressure Regulation: Focus on SCFAs and TMAO.
    Poll BG; Cheema MU; Pluznick JL
    Physiology (Bethesda); 2020 Jul; 35(4):275-284. PubMed ID: 32490748
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gut microbial metabolites in obesity, NAFLD and T2DM.
    Canfora EE; Meex RCR; Venema K; Blaak EE
    Nat Rev Endocrinol; 2019 May; 15(5):261-273. PubMed ID: 30670819
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dietary lipids, gut microbiota and lipid metabolism.
    Schoeler M; Caesar R
    Rev Endocr Metab Disord; 2019 Dec; 20(4):461-472. PubMed ID: 31707624
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 30.