These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 33373749)

  • 1. Climate change reduces frost exposure for high-value California orchard crops.
    Parker L; Pathak T; Ostoja S
    Sci Total Environ; 2021 Mar; 762():143971. PubMed ID: 33373749
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Projected temperature increases may require shifts in the growing season of cool-season crops and the growing locations of warm-season crops.
    Marklein A; Elias E; Nico P; Steenwerth K
    Sci Total Environ; 2020 Dec; 746():140918. PubMed ID: 32750574
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using cost-benefit analysis to understand adoption of winter cover cropping in California's specialty crop systems.
    DeVincentis AJ; Solis SS; Bruno EM; Leavitt A; Gomes A; Rice S; Zaccaria D
    J Environ Manage; 2020 May; 261():110205. PubMed ID: 32148274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of climate change on navel orangeworm, a major pest of tree nuts in California.
    Pathak TB; Maskey ML; Rijal JP
    Sci Total Environ; 2021 Feb; 755(Pt 1):142657. PubMed ID: 33092836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A variety-specific analysis of climate change effects on California winegrapes.
    Parker LE; Zhang N; Abatzoglou JT; Kisekka I; McElrone AJ; Ostoja SM
    Int J Biometeorol; 2024 Aug; 68(8):1559-1571. PubMed ID: 38652161
    [TBL] [Abstract][Full Text] [Related]  

  • 6. California Almond Yield Prediction at the Orchard Level With a Machine Learning Approach.
    Zhang Z; Jin Y; Chen B; Brown P
    Front Plant Sci; 2019; 10():809. PubMed ID: 31379888
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SWAT-MODSIM-PSO optimization of multi-crop planning in the Karkheh River Basin, Iran, under the impacts of climate change.
    Fereidoon M; Koch M
    Sci Total Environ; 2018 Jul; 630():502-516. PubMed ID: 29486443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Climate Change and Crop Exposure to Adverse Weather: Changes to Frost Risk and Grapevine Flowering Conditions.
    Mosedale JR; Wilson RJ; Maclean IM
    PLoS One; 2015; 10(10):e0141218. PubMed ID: 26496127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Breeding for the future: what are the potential impacts of future frost and heat events on sowing and flowering time requirements for Australian bread wheat (Triticum aestivium) varieties?
    Zheng B; Chenu K; Fernanda Dreccer M; Chapman SC
    Glob Chang Biol; 2012 Sep; 18(9):2899-914. PubMed ID: 24501066
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The implication of irrigation in climate change impact assessment: a European-wide study.
    Zhao G; Webber H; Hoffmann H; Wolf J; Siebert S; Ewert F
    Glob Chang Biol; 2015 Nov; 21(11):4031-48. PubMed ID: 26227557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of temperature, precipitation and carbon dioxide concentrations on the requirements for crop irrigation water in China under future climate scenarios.
    Zhang Y; Wang Y; Niu H
    Sci Total Environ; 2019 Mar; 656():373-387. PubMed ID: 30513428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Climate change and spring frost damages for sweet cherries in Germany.
    Chmielewski FM; Götz KP; Weber KC; Moryson S
    Int J Biometeorol; 2018 Feb; 62(2):217-228. PubMed ID: 28965141
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spring frost risk for regional apple production under a warmer climate.
    Unterberger C; Brunner L; Nabernegg S; Steininger KW; Steiner AK; Stabentheiner E; Monschein S; Truhetz H
    PLoS One; 2018; 13(7):e0200201. PubMed ID: 30044808
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Losing ground: projections of climate-driven bloom shifts and their implications for the future of California's almond orchards.
    Orozco J; Lauterman O; Sperling O; Paz-Kagan T; Zwieniecki MA
    Sci Rep; 2024 Jan; 14(1):636. PubMed ID: 38182702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Global reductions in manual agricultural work capacity due to climate change.
    Nelson GC; Vanos J; Havenith G; Jay O; Ebi KL; Hijmans RJ
    Glob Chang Biol; 2024 Jan; 30(1):e17142. PubMed ID: 38273519
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional phenomics for improved climate resilience in Nordic agriculture.
    Roitsch T; Himanen K; Chawade A; Jaakola L; Nehe A; Alexandersson E
    J Exp Bot; 2022 Sep; 73(15):5111-5127. PubMed ID: 35727101
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Western water and climate change.
    Dettinger M; Udall B; Georgakakos A
    Ecol Appl; 2015 Dec; 25(8):2069-93. PubMed ID: 26910940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of climate change on phenology, frost damage, and floral abundance of montane wildflowers.
    Inouye DW
    Ecology; 2008 Feb; 89(2):353-62. PubMed ID: 18409425
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extreme heat effects on perennial crops and strategies for sustaining future production.
    Parker LE; McElrone AJ; Ostoja SM; Forrestel EJ
    Plant Sci; 2020 Jun; 295():110397. PubMed ID: 32534613
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crop Growers' Adaptive Capacity to Climate Change: A Situated Study of Agriculture in Arizona's Verde Valley.
    Douglass-Gallagher E; Stuart D
    Environ Manage; 2019 Jan; 63(1):94-109. PubMed ID: 30443732
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.