These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 33373749)

  • 21. A GIS analysis of the relationship between sinkholes, dry-well complaints and groundwater pumping for frost-freeze protection of winter strawberry production in Florida.
    Aurit MD; Peterson RO; Blanford JI
    PLoS One; 2013; 8(1):e53832. PubMed ID: 23326518
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Orchard recycling improves climate change adaptation and mitigation potential of almond production systems.
    Jahanzad E; Holtz BA; Zuber CA; Doll D; Brewer KM; Hogan S; Gaudin ACM
    PLoS One; 2020; 15(3):e0229588. PubMed ID: 32218562
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modeling impacts of future climate change on reservoir storages and irrigation water demands in a Mediterranean basin.
    Gorguner M; Kavvas ML
    Sci Total Environ; 2020 Dec; 748():141246. PubMed ID: 32798863
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Variation characteristics of agricultural heat resource and its effect on agriculture in Shanxi Province, China].
    Qian JX; Zhang JX; Li N; Han P
    Ying Yong Sheng Tai Xue Bao; 2015 Mar; 26(3):786-92. PubMed ID: 26211060
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Using crop modeling to evaluate the impacts of climate change on wheat in southeastern turkey.
    Vanli Ö; Ustundag BB; Ahmad I; Hernandez-Ochoa IM; Hoogenboom G
    Environ Sci Pollut Res Int; 2019 Oct; 26(28):29397-29408. PubMed ID: 31401801
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Changes of China agricultural climate resources under the background of climate change. V. Change characteristics of agricultural climate resources in Ningxia].
    Yuan HY; Zhang XY; Xu HJ; Yang XG
    Ying Yong Sheng Tai Xue Bao; 2011 May; 22(5):1247-54. PubMed ID: 21812302
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sub-zero cold tolerance of Spartina pectinata (prairie cordgrass) and Miscanthus × giganteus: candidate bioenergy crops for cool temperate climates.
    Friesen PC; Peixoto Mde M; Lee DK; Sage RF
    J Exp Bot; 2015 Jul; 66(14):4403-13. PubMed ID: 25873680
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Variability of growing degree days in Poland in response to ongoing climate changes in Europe.
    Wypych A; Sulikowska A; Ustrnul Z; Czekierda D
    Int J Biometeorol; 2017 Jan; 61(1):49-59. PubMed ID: 27221968
    [TBL] [Abstract][Full Text] [Related]  

  • 29. U.S. Agro-Climate in 20
    Kukal MS; Irmak S
    Sci Rep; 2018 May; 8(1):6977. PubMed ID: 29725053
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Investigating Impacts of Climate Change on Irrigation Water Demands and Its Resulting Consequences on Groundwater Using CMIP5 Models.
    Goodarzi M; Abedi-Koupai J; Heidarpour M
    Ground Water; 2019 Mar; 57(2):259-268. PubMed ID: 29656409
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Implications of climate change scenarios for agriculture in alpine regions--a case study in the Swiss Rhone catchment.
    Fuhrer J; Smith P; Gobiet A
    Sci Total Environ; 2014 Sep; 493():1232-41. PubMed ID: 23830922
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Carbon-temperature-water change analysis for peanut production under climate change: a prototype for the AgMIP coordinated climate-crop modeling project (C3MP).
    Ruane AC; McDermid S; Rosenzweig C; Baigorria GA; Jones JW; Romero CC; Dewayne Cecil L
    Glob Chang Biol; 2014 Feb; 20(2):394-407. PubMed ID: 24115520
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Long term prospective of the Seine River system: confronting climatic and direct anthropogenic changes.
    Ducharne A; Baubion C; Beaudoin N; Benoit M; Billen G; Brisson N; Garnier J; Kieken H; Lebonvallet S; Ledoux E; Mary B; Mignolet C; Poux X; Sauboua E; Schott C; Théry S; Viennot P
    Sci Total Environ; 2007 Apr; 375(1-3):292-311. PubMed ID: 17258297
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Limited alpine climatic warming and modeled phenology advancement for three alpine species in the Northeast United States.
    Kimball KD; Davis ML; Weihrauch DM; Murray GL; Rancourt K
    Am J Bot; 2014 Sep; 101(9):1437-46. PubMed ID: 25253704
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Impacts of climate change, population growth, and urbanization on future population exposure to long-term temperature change during the warm season in China.
    Zhang W; Li Y; Li Z; Wei X; Ren T; Liu J; Zhu Y
    Environ Sci Pollut Res Int; 2020 Mar; 27(8):8481-8491. PubMed ID: 31902079
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Impact of climate change on crop yield and role of model for achieving food security.
    Kumar M
    Environ Monit Assess; 2016 Aug; 188(8):465. PubMed ID: 27418072
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Impacts of climate change and crop management practices on soybean phenology changes in China.
    He L; Jin N; Yu Q
    Sci Total Environ; 2020 Mar; 707():135638. PubMed ID: 31780168
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Climate impacts on European agriculture and water management in the context of adaptation and mitigation--the importance of an integrated approach.
    Falloon P; Betts R
    Sci Total Environ; 2010 Nov; 408(23):5667-87. PubMed ID: 19501386
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Extreme heat reduces and shifts United States premium wine production in the 21st century.
    White MA; Diffenbaugh NS; Jones GV; Pal JS; Giorgi F
    Proc Natl Acad Sci U S A; 2006 Jul; 103(30):11217-22. PubMed ID: 16840557
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.