These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 33373815)

  • 1. Brain MRI artefact detection and correction using convolutional neural networks.
    Oksuz I
    Comput Methods Programs Biomed; 2021 Feb; 199():105909. PubMed ID: 33373815
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep Learning-Based Detection and Correction of Cardiac MR Motion Artefacts During Reconstruction for High-Quality Segmentation.
    Oksuz I; Clough JR; Ruijsink B; Anton EP; Bustin A; Cruz G; Prieto C; King AP; Schnabel JA
    IEEE Trans Med Imaging; 2020 Dec; 39(12):4001-4010. PubMed ID: 32746141
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic CNN-based detection of cardiac MR motion artefacts using k-space data augmentation and curriculum learning.
    Oksuz I; Ruijsink B; Puyol-Antón E; Clough JR; Cruz G; Bustin A; Prieto C; Botnar R; Rueckert D; Schnabel JA; King AP
    Med Image Anal; 2019 Jul; 55():136-147. PubMed ID: 31055126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An efficient semi-supervised quality control system trained using physics-based MRI-artefact generators and adversarial training.
    Ravi D; ; Barkhof F; Alexander DC; Puglisi L; Parker GJM; Eshaghi A
    Med Image Anal; 2024 Jan; 91():103033. PubMed ID: 38000256
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A k-Space Model of Movement Artefacts: Application to Segmentation Augmentation and Artefact Removal.
    Shaw R; Sudre CH; Varsavsky T; Ourselin S; Cardoso MJ
    IEEE Trans Med Imaging; 2020 Sep; 39(9):2881-2892. PubMed ID: 32149627
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correction of out-of-FOV motion artifacts using convolutional neural network.
    Wang C; Liang Y; Wu Y; Zhao S; Du YP
    Magn Reson Imaging; 2020 Sep; 71():93-102. PubMed ID: 32464243
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DENSE-INception U-net for medical image segmentation.
    Zhang Z; Wu C; Coleman S; Kerr D
    Comput Methods Programs Biomed; 2020 Aug; 192():105395. PubMed ID: 32163817
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic MR image quality evaluation using a Deep CNN: A reference-free method to rate motion artifacts in neuroimaging.
    Fantini I; Yasuda C; Bento M; Rittner L; Cendes F; Lotufo R
    Comput Med Imaging Graph; 2021 Jun; 90():101897. PubMed ID: 33770561
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic detection of Gibbs artefact in MR images with transfer learning approach.
    Kocet L; Romarič K; Žibert J
    Technol Health Care; 2023; 31(1):239-246. PubMed ID: 36120746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cardiac magnetic resonance image segmentation based on convolutional neural network.
    Liu D; Jia Z; Jin M; Liu Q; Liao Z; Zhong J; Ye H; Chen G
    Comput Methods Programs Biomed; 2020 Dec; 197():105755. PubMed ID: 32977180
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correction of Motion Artifacts Using a Multiscale Fully Convolutional Neural Network.
    Sommer K; Saalbach A; Brosch T; Hall C; Cross NM; Andre JB
    AJNR Am J Neuroradiol; 2020 Mar; 41(3):416-423. PubMed ID: 32054615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Segmenting brain tumors from FLAIR MRI using fully convolutional neural networks.
    Ribalta Lorenzo P; Nalepa J; Bobek-Billewicz B; Wawrzyniak P; Mrukwa G; Kawulok M; Ulrych P; Hayball MP
    Comput Methods Programs Biomed; 2019 Jul; 176():135-148. PubMed ID: 31200901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic brain tissue segmentation in fetal MRI using convolutional neural networks.
    Khalili N; Lessmann N; Turk E; Claessens N; Heus R; Kolk T; Viergever MA; Benders MJNL; Išgum I
    Magn Reson Imaging; 2019 Dec; 64():77-89. PubMed ID: 31181246
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification and Diagnosis of Cerebral Stroke through Deep Convolutional Neural Network-Based Multimodal MRI Images.
    Pan Y; Zhang H; Yang J; Guo J; Yang Z; Wang J; Song G
    Contrast Media Mol Imaging; 2021; 2021():7598613. PubMed ID: 34381322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance improvement of weakly supervised fully convolutional networks by skip connections for brain structure segmentation.
    Sugino T; Roth HR; Oda M; Kin T; Saito N; Nakajima Y; Mori K
    Med Phys; 2021 Nov; 48(11):7215-7227. PubMed ID: 34453333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving MR image quality with a multi-task model, using convolutional losses.
    Simkó A; Ruiter S; Löfstedt T; Garpebring A; Nyholm T; Bylund M; Jonsson J
    BMC Med Imaging; 2023 Oct; 23(1):148. PubMed ID: 37784039
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Efficient Implementation of Deep Convolutional Neural Networks for MRI Segmentation.
    Hoseini F; Shahbahrami A; Bayat P
    J Digit Imaging; 2018 Oct; 31(5):738-747. PubMed ID: 29488179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous Tissue Classification and Lateral Ventricle Segmentation via a 2D U-net Driven by a 3D Fully Convolutional Neural Network.
    Wu J; Zhang Y; Tang X
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5928-5931. PubMed ID: 31947198
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SDResU-Net: Separable and Dilated Residual U-Net for MRI Brain Tumor Segmentation.
    Zhang J; Lv X; Sun Q; Zhang Q; Wei X; Liu B
    Curr Med Imaging; 2020; 16(6):720-728. PubMed ID: 32723244
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brain Tumor Segmentation Using Convolutional Neural Networks in MRI Images.
    Thaha MM; Kumar KPM; Murugan BS; Dhanasekeran S; Vijayakarthick P; Selvi AS
    J Med Syst; 2019 Jul; 43(9):294. PubMed ID: 31342192
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.