These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
253 related articles for article (PubMed ID: 33373952)
1. The performance of aerobic granular sludge for simulated swine wastewater treatment and the removal mechanism of tetracycline. Wang X; Li J; Zhang X; Chen Z; Shen J; Kang J J Hazard Mater; 2021 Apr; 408():124762. PubMed ID: 33373952 [TBL] [Abstract][Full Text] [Related]
2. Mechanism of oxytetracycline removal by aerobic granular sludge in SBR. Wang X; Shen J; Kang J; Zhao X; Chen Z Water Res; 2019 Sep; 161():308-318. PubMed ID: 31203036 [TBL] [Abstract][Full Text] [Related]
3. Effect of carbon source on pollutant removal and microbial community dynamics in treatment of swine wastewater containing antibiotics by aerobic granular sludge. Wang X; Chen Z; Shen J; Kang J; Zhang X; Li J; Zhao X Chemosphere; 2020 Dec; 260():127544. PubMed ID: 32673869 [TBL] [Abstract][Full Text] [Related]
4. Performance of aerobic granular sludge in different bioreactors. Zhao X; Chen Z; Shen J; Wang X Environ Technol; 2014; 35(5-8):938-44. PubMed ID: 24645477 [TBL] [Abstract][Full Text] [Related]
5. Impact of hydraulic retention time on swine wastewater treatment by aerobic granular sludge sequencing batch reactor. Wang X; Li J; Zhang X; Chen Z; Shen J; Kang J Environ Sci Pollut Res Int; 2021 Feb; 28(5):5927-5937. PubMed ID: 32981014 [TBL] [Abstract][Full Text] [Related]
6. Effect of the gradual increase of Na Shi X; Li J; Wang X; Zhang X; Tang L J Environ Manage; 2021 Aug; 292():112696. PubMed ID: 33984643 [TBL] [Abstract][Full Text] [Related]
7. Effect of an azo dye on the performance of an aerobic granular sludge sequencing batch reactor treating a simulated textile wastewater. Franca RD; Vieira A; Mata AM; Carvalho GS; Pinheiro HM; Lourenço ND Water Res; 2015 Nov; 85():327-36. PubMed ID: 26343991 [TBL] [Abstract][Full Text] [Related]
8. Piggery wastewater treatment by aerobic granular sludge: Granulation process and antibiotics and antibiotic-resistant bacteria removal and transport. Wang S; Ma X; Wang Y; Du G; Tay JH; Li J Bioresour Technol; 2019 Feb; 273():350-357. PubMed ID: 30448688 [TBL] [Abstract][Full Text] [Related]
9. Aerobic granular sludge formation and stability in enhanced biological phosphorus removal system under antibiotics pressure: Performance, granulation mechanism, and microbial successions. Cheng L; Wei M; Hu Q; Li B; Li B; Wang W; Abudi ZN; Hu Z J Hazard Mater; 2023 Jul; 454():131472. PubMed ID: 37099906 [TBL] [Abstract][Full Text] [Related]
10. The key role of inoculated sludge in fast start-up of sequencing batch reactor for the domestication of aerobic granular sludge. Wang XC; Chen ZL; Kang J; Zhao X; Shen JM; Yang L J Environ Sci (China); 2019 Apr; 78():127-136. PubMed ID: 30665631 [TBL] [Abstract][Full Text] [Related]
11. Development of aerobic granular sludge for real industrial/municipal wastewater treatment. Sanchez-Sanchez C; Moreno-Rodríguez E; Ortiz-Cruz JA; Moeller-Chávez GE Water Sci Technol; 2023 May; 87(9):2328-2344. PubMed ID: 37186634 [TBL] [Abstract][Full Text] [Related]
12. Rapid formation and pollutant removal ability of aerobic granules in a sequencing batch airlift reactor at low temperature. Jiang Y; Shang Y; Wang H; Yang K Environ Technol; 2016 Dec; 37(23):3078-85. PubMed ID: 27166437 [TBL] [Abstract][Full Text] [Related]
13. Sequencing versus continuous granular sludge reactor for the treatment of freshwater aquaculture effluents. Santorio S; Couto AT; Amorim CL; Val Del Rio A; Arregui L; Mosquera-Corral A; Castro PML Water Res; 2021 Aug; 201():117293. PubMed ID: 34146761 [TBL] [Abstract][Full Text] [Related]
14. Aerobic granules formation and simultaneous nitrogen and phosphorus removal treating high strength ammonia wastewater in sequencing batch reactor. Wei D; Shi L; Yan T; Zhang G; Wang Y; Du B Bioresour Technol; 2014 Nov; 171():211-6. PubMed ID: 25203228 [TBL] [Abstract][Full Text] [Related]
15. [Simultaneous phosphorus and nitrogen removal of domestic sewage with aerobic granular sludge SBR]. Lu S; Ji M; Wang JF; Wei YJ Huan Jing Ke Xue; 2007 Aug; 28(8):1687-92. PubMed ID: 17926394 [TBL] [Abstract][Full Text] [Related]
16. Treatment of real domestic sewage in a pilot-scale aerobic granular sludge reactor: Assessing start-up and operational control. Campos F; Guimarães NR; Maia FC; Sandoval MZ; Bassin JP; Bueno RF; Piveli RP Water Environ Res; 2021 Jun; 93(6):896-905. PubMed ID: 33176037 [TBL] [Abstract][Full Text] [Related]
17. [Long-term Performance and Bacterial Community Composition Analysis of AGS-SBR Treating the Low COD/N Sewage at Low DO Concentration Condition]. Xin X; Guan L; Yao YD; Yang YJ; Guo JY; Cheng QF Huan Jing Ke Xue; 2016 Jun; 37(6):2259-2265. PubMed ID: 29964894 [TBL] [Abstract][Full Text] [Related]
18. Optimization of three operating parameters for a two-step fed sequencing batch reactor (SBR) system to remove nutrients from swine wastewater. Wu X; Zhu J; Cheng J; Zhu N Appl Biochem Biotechnol; 2015 Mar; 175(6):2857-71. PubMed ID: 25564205 [TBL] [Abstract][Full Text] [Related]
19. Achieving tetracycline removal enhancement with granules in marine matrices: Performance, adaptation, and mechanism studies. Hao T; Shao J; Hu P; Varjani S; Qian G Bioresour Technol; 2023 Mar; 371():128590. PubMed ID: 36627084 [TBL] [Abstract][Full Text] [Related]
20. Impact of primary sedimentation on granulation and treatment performance of municipal wastewater by aerobic granular sludge process. Kosar S; Isik O; Cicekalan B; Gulhan H; Sagir Kurt E; Atli E; Basa S; Ozgun H; Koyuncu I; van Loosdrecht MCM; Ersahin ME J Environ Manage; 2022 Aug; 315():115191. PubMed ID: 35526399 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]