BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 33374076)

  • 1. [DA-6 and GLDA Enhanced
    Wang Z; Sun ZJ; Sameh M; Wang Z; He J; Han L
    Huan Jing Ke Xue; 2020 Dec; 41(12):5589-5599. PubMed ID: 33374076
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Effects of Chelate GLDA on the Remediation of Cadmium Contaminated Farmland by
    Qin JJ; Tang SS; Jiang K; Huang J; Hou HB; Long J; Peng PQ
    Huan Jing Ke Xue; 2020 Aug; 41(8):3862-3869. PubMed ID: 33124364
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chelator complexes enhanced Amaranthus hypochondriacus L. phytoremediation efficiency in Cd-contaminated soils.
    Wang K; Liu Y; Song Z; Wang D; Qiu W
    Chemosphere; 2019 Dec; 237():124480. PubMed ID: 31394449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of chelate GLDA for remediating Cd-contaminated farmlands using Tagetes patula L.
    Li H; Jin R; Xu Z; Hu H; Kalkhajeh YK; Zhao Y; Zhan L
    Environ Sci Pollut Res Int; 2023 Jan; 30(2):3774-3782. PubMed ID: 35960470
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Enhanced Phytoextraction of Heavy Metals from Contaminated Soils Using Sedum alfredii Hance with Biodegradable Chelate GLDA].
    Wei ZB; Chen XH; Wu QT; Tan M
    Huan Jing Ke Xue; 2015 May; 36(5):1864-9. PubMed ID: 26314141
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Enhanced Phytoextraction of Cadmium Contaminated Soil by
    He YL; Yu J; Xie SQ; Li PR; Zhou K; He H
    Huan Jing Ke Xue; 2020 Feb; 41(2):979-985. PubMed ID: 32608760
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical forms of cadmium in soil and its distribution in French marigold sub-cells in response to chelator GLDA.
    Li H; Kong D; Zhang B; Kalkhajeh YK; Zhao Y; Huang J; Hu H
    Sci Rep; 2022 Oct; 12(1):17577. PubMed ID: 36266400
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phytoremediation of cadmium-contaminated soils by Solanum nigrum L. enhanced with biodegradable chelating agents.
    Teng Y; Li Z; Yu A; Guan W; Wang Z; Yu H; Zou L
    Environ Sci Pollut Res Int; 2022 Aug; 29(37):56750-56759. PubMed ID: 35347607
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GLDA and EDTA assisted phytoremediation potential of
    Guan H; Dong L; Zhang Y; Bai S; Yan L
    Int J Phytoremediation; 2022; 24(13):1395-1404. PubMed ID: 35166632
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of the phytoremediation efficiency of Ricinus communis L. and methane uptake from cadmium and nickel-contaminated soil using spent mushroom substrate.
    Sun Y; Wen C; Liang X; He C
    Environ Sci Pollut Res Int; 2018 Nov; 25(32):32603-32616. PubMed ID: 30242654
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cleanup of arsenic, cadmium, and lead in the soil from a smelting site using N,N-bis(carboxymethyl)-L-glutamic acid combined with ascorbic acid: A lab-scale experiment.
    Yan D; Guo Z; Xiao X; Peng C; He Y; Yang A; Wang X; Hu Y; Li Z
    J Environ Manage; 2021 Oct; 296():113174. PubMed ID: 34237673
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phytoremediation of Cd and Pb interactive polluted soils by switchgrass (
    Guo Z; Gao Y; Cao X; Jiang W; Liu X; Liu Q; Chen Z; Zhou W; Cui J; Wang Q
    Int J Phytoremediation; 2019; 21(14):1486-1496. PubMed ID: 31342773
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Remediation of cadmium-contaminated soil: GLDA-assisted extraction and sequential FeCl
    Ni S; Rahman S; Harada Y; Yoshioka S; Imaizumi M; Wong KH; Mashio AS; Ohta A; Hasegawa H
    Chemosphere; 2024 Jan; 346():140554. PubMed ID: 38303381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Model optimization of cadmium and accumulation in switchgrass (Panicum virgatum L.): potential use for ecological phytoremediation in Cd-contaminated soils.
    Wang Q; Gu M; Ma X; Zhang H; Wang Y; Cui J; Gao W; Gui J
    Environ Sci Pollut Res Int; 2015 Nov; 22(21):16758-71. PubMed ID: 26092360
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heavy metal removal by GLDA washing: Optimization, redistribution, recycling, and changes in soil fertility.
    Wang G; Zhang S; Xu X; Zhong Q; Zhang C; Jia Y; Li T; Deng O; Li Y
    Sci Total Environ; 2016 Nov; 569-570():557-568. PubMed ID: 27371771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of composited organic mobilizing agents and their application periods on cadmium absorption of Sorghum bicolor L. in a Cd-contaminated soil.
    Li B; Duan MM; Zeng XB; Zhang Q; Xu C; Zhu HH; Zhu QH; Huang DY
    Chemosphere; 2021 Jan; 263():128136. PubMed ID: 33297124
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The addition of degradable chelating agents enhances maize phytoremediation efficiency in Cd-contaminated soils.
    Yang Q; Yang C; Yu H; Zhao Z; Bai Z
    Chemosphere; 2021 Apr; 269():129373. PubMed ID: 33387792
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phytoextraction of contaminated urban soils by Panicum virgatum L. enhanced with application of a plant growth regulator (BAP) and citric acid.
    Aderholt M; Vogelien DL; Koether M; Greipsson S
    Chemosphere; 2017 May; 175():85-96. PubMed ID: 28211339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of dissolved organic matter on the phytoremediation of Cd-contaminated soil by cotton.
    Min T; Luo T; Chen L; Lu W; Wang Y; Cheng L; Ru S; Li J
    Ecotoxicol Environ Saf; 2021 Dec; 226():112842. PubMed ID: 34624530
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phytoremediation of Heavy Metal-Contaminated Soil by Switchgrass: A Comparative Study Utilizing Different Composts and Coir Fiber on Pollution Remediation, Plant Productivity, and Nutrient Leaching.
    Shrestha P; Bellitürk K; Görres JH
    Int J Environ Res Public Health; 2019 Apr; 16(7):. PubMed ID: 30970575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.