These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 33374082)
1. [Effects of Modified Biowaste-based Hydrochar on Rice Yield and Nitrogen Uptake]. Hou PF; Xue LH; Feng YF; Yu S; Yang LZ Huan Jing Ke Xue; 2020 Dec; 41(12):5648-5655. PubMed ID: 33374082 [TBL] [Abstract][Full Text] [Related]
2. Win-win: Application of sawdust-derived hydrochar in low fertility soil improves rice yield and reduces greenhouse gas emissions from agricultural ecosystems. Hou P; Feng Y; Wang N; Petropoulos E; Li D; Yu S; Xue L; Yang L Sci Total Environ; 2020 Dec; 748():142457. PubMed ID: 33113706 [TBL] [Abstract][Full Text] [Related]
3. [Effects of Wheat Straw Hydrochar and Its Modified Product on Rice Yield and Ammonia Volatilization from Paddy Fields]. Han C; Hou PF; Xue LH; Feng YF; Yu S; Yang LZ Huan Jing Ke Xue; 2021 Jul; 42(7):3451-3457. PubMed ID: 34212672 [TBL] [Abstract][Full Text] [Related]
4. Bio- and hydrochars from rice straw and pig manure: Inter-comparison. Liu Y; Yao S; Wang Y; Lu H; Brar SK; Yang S Bioresour Technol; 2017 Jul; 235():332-337. PubMed ID: 28376384 [TBL] [Abstract][Full Text] [Related]
5. Biowaste hydrothermal carbonization aqueous product application in rice paddy: Focus on rice growth and ammonia volatilization. Feng Y; He H; Li D; He S; Yang B; Xue L; Chu Q Chemosphere; 2021 Aug; 277():130233. PubMed ID: 34384170 [TBL] [Abstract][Full Text] [Related]
6. Microalgae-derived hydrochar application on rice paddy soil: Higher rice yield but increased gaseous nitrogen loss. Chu Q; Xue L; Cheng Y; Liu Y; Feng Y; Yu S; Meng L; Pan G; Hou P; Duan J; Yang L Sci Total Environ; 2020 May; 717():137127. PubMed ID: 32084683 [TBL] [Abstract][Full Text] [Related]
7. Bentonite hydrochar composites mitigate ammonia volatilization from paddy soil and improve nitrogen use efficiency. Chu Q; Xu S; Xue L; Liu Y; Feng Y; Yu S; Yang L; Xing B Sci Total Environ; 2020 May; 718():137301. PubMed ID: 32105922 [TBL] [Abstract][Full Text] [Related]
8. Hydrothermal co-carbonization of sewage sludge and pinewood sawdust for nutrient-rich hydrochar production: Synergistic effects and products characterization. Zhang X; Zhang L; Li A J Environ Manage; 2017 Oct; 201():52-62. PubMed ID: 28645066 [TBL] [Abstract][Full Text] [Related]
9. Hydrothermal carbonization of kitchen waste: An analysis of solid and aqueous products and the application of hydrochar to paddy soil. Xu Y; Wang B; Ding S; Zhao M; Ji Y; Xie W; Feng Z; Feng Y Sci Total Environ; 2022 Dec; 850():157953. PubMed ID: 35963404 [TBL] [Abstract][Full Text] [Related]
10. Upgradation of chemical, fuel, thermal, and structural properties of rice husk through microwave-assisted hydrothermal carbonization. Nizamuddin S; Siddiqui MTH; Baloch HA; Mubarak NM; Griffin G; Madapusi S; Tanksale A Environ Sci Pollut Res Int; 2018 Jun; 25(18):17529-17539. PubMed ID: 29663294 [TBL] [Abstract][Full Text] [Related]
11. Assessing the viability of soil successive straw biochar amendment based on a five-year column trial with six different soils: Views from crop production, carbon sequestration and net ecosystem economic benefits. Bi Y; Cai S; Wang Y; Xia Y; Zhao X; Wang S; Xing G J Environ Manage; 2019 Sep; 245():173-186. PubMed ID: 31152961 [TBL] [Abstract][Full Text] [Related]
12. Impact of hydrochar on rice paddy CH Zhou B; Feng Y; Wang Y; Yang L; Xue L; Xing B Chemosphere; 2018 Aug; 204():474-482. PubMed ID: 29679868 [TBL] [Abstract][Full Text] [Related]
13. Evolution of elemental nitrogen involved in the carbonization mechanism and product features from wet biowaste. Zhang Z; Xuan X; Wang J; Zhao X; Yang J; Zhao Y; Qian J; TengfeiWang Sci Total Environ; 2023 Aug; 884():163826. PubMed ID: 37121324 [TBL] [Abstract][Full Text] [Related]
14. Liquid-solid ratio during hydrothermal carbonization affects hydrochar application potential in soil: Based on characteristics comparison and economic benefit analysis. Si H; Zhao C; Wang B; Liang X; Gao M; Jiang Z; Yu H; Yang Y; Gu Z; Ogino K; Chen X J Environ Manage; 2023 Jun; 335():117567. PubMed ID: 36857889 [TBL] [Abstract][Full Text] [Related]
15. Sewage sludge-derived hydrochar that inhibits ammonia volatilization, improves soil nitrogen retention and rice nitrogen utilization. Chu Q; Xue L; Singh BP; Yu S; Müller K; Wang H; Feng Y; Pan G; Zheng X; Yang L Chemosphere; 2020 Apr; 245():125558. PubMed ID: 31855761 [TBL] [Abstract][Full Text] [Related]
16. Biowaste hydrothermal carbonization for hydrochar valorization: Skeleton structure, conversion pathways and clean biofuel applications. Zhang Z; Yang J; Qian J; Zhao Y; Wang T; Zhai Y Bioresour Technol; 2021 Mar; 324():124686. PubMed ID: 33454447 [TBL] [Abstract][Full Text] [Related]
17. [Effect of Applying Hydrochar for Reduction of Ammonia Volatilization and Mechanisms in Paddy Soil]. Yu S; Xue LH; Hua Y; Li DT; Xie F; Feng YF; Sun QY; Yang LZ Huan Jing Ke Xue; 2020 Feb; 41(2):922-931. PubMed ID: 32608754 [TBL] [Abstract][Full Text] [Related]
18. Nitrogen availability and indirect measurements of greenhouse gas emissions from aerobic and anaerobic biowaste digestates applied to agricultural soils. Rigby H; Smith SR Waste Manag; 2013 Dec; 33(12):2641-52. PubMed ID: 24035244 [TBL] [Abstract][Full Text] [Related]
19. Pyrolyzed municipal sewage sludge ensured safe grain production while reduced C emissions in a paddy soil under rice and wheat rotation. Shao Q; Ju Y; Guo W; Xia X; Bian R; Li L; Li W; Liu X; Zheng J; Pan G Environ Sci Pollut Res Int; 2019 Mar; 26(9):9244-9256. PubMed ID: 30721435 [TBL] [Abstract][Full Text] [Related]
20. Trade-offs between soil carbon sequestration and reactive nitrogen losses under straw return in global agroecosystems. Xia L; Lam SK; Wolf B; Kiese R; Chen D; Butterbach-Bahl K Glob Chang Biol; 2018 Dec; 24(12):5919-5932. PubMed ID: 30295405 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]