These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 33374171)

  • 1. Glycolysis of Poly(Ethylene Terephthalate) Using Biomass-Waste Derived Recyclable Heterogeneous Catalyst.
    Lalhmangaihzuala S; Laldinpuii Z; Lalmuanpuia C; Vanlaldinpuia K
    Polymers (Basel); 2020 Dec; 13(1):. PubMed ID: 33374171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Depolymerization of poly(ethylene terephthalate) waste with biomass-waste derived recyclable heterogeneous catalyst.
    Laldinpuii Z; Lalhmangaihzuala S; Pachuau Z; Vanlaldinpuia K
    Waste Manag; 2021 May; 126():1-10. PubMed ID: 33730654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-Step Chemo-Microbial Degradation of Post-Consumer Polyethylene Terephthalate (PET) Plastic Enabled by a Biomass-Waste Catalyst.
    Shingwekar D; Laster H; Kemp H; Mellies JL
    Bioengineering (Basel); 2023 Oct; 10(11):. PubMed ID: 38002377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PET Glycolysis to BHET Efficiently Catalyzed by Stable and Recyclable Pd-Cu/γ-Al
    Zhou L; Qin E; Huang H; Wang Y; Li M
    Molecules; 2024 Sep; 29(18):. PubMed ID: 39339298
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal-oxide-doped silica nanoparticles for the catalytic glycolysis of polyethylene terephthalate.
    Imran M; Lee KG; Imtiaz Q; Kim BK; Han M; Cho BG; Kim DH
    J Nanosci Nanotechnol; 2011 Jan; 11(1):824-8. PubMed ID: 21446554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual-porous ZIF-8 heterogeneous catalysts with increased reaction sites for efficient PET glycolysis.
    Han N; Lee K; Lee J; Jo JH; An EJ; Lee G; Chi WS; Lee C
    Chemosphere; 2024 Sep; 364():143187. PubMed ID: 39187024
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomass-Derived Activated Carbon-Supported Copper Catalyst: An Efficient Heterogeneous Magnetic Catalyst for Base-Free Chan-Lam Coupling and Oxidations.
    Sharma S; Kaur M; Sharma C; Choudhary A; Paul S
    ACS Omega; 2021 Aug; 6(30):19529-19545. PubMed ID: 34368539
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transformation of Waste Toner Powder into Valuable Fe
    Kouser M; Chowhan B; Sharma N; Gupta M
    ACS Omega; 2022 Dec; 7(51):47619-47633. PubMed ID: 36591190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimizing PET Glycolysis with an Oyster Shell-Derived Catalyst Using Response Surface Methodology.
    Kim Y; Kim M; Hwang J; Im E; Moon GD
    Polymers (Basel); 2022 Feb; 14(4):. PubMed ID: 35215568
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlled Glycolysis of Poly(ethylene terephthalate) to Oligomers under Microwave Irradiation Using Antimony(III) Oxide.
    Mohammadi S; Bouldo MG; Enayati M
    ACS Appl Polym Mater; 2023 Aug; 5(8):6574-6584. PubMed ID: 37588081
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanostructured micro particles as a low-cost and sustainable catalyst in the recycling of PET fiber waste by the glycolysis method.
    Guo Z; Adolfsson E; Tam PL
    Waste Manag; 2021 May; 126():559-566. PubMed ID: 33862509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical recycling of polyester textile wastes using silver-doped zinc oxide nanoparticles: an economical solution for circular economy.
    Vinitha V; Preeyanghaa M; Anbarasu M; Neppolian B; Sivamurugan V
    Environ Sci Pollut Res Int; 2023 Jun; 30(30):75401-75416. PubMed ID: 37217818
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Zn- and Ti-Modified Hydrotalcites for Transesterification of Dimethyl Terephthalate with Ethylene Glycol: Effect of the Metal Oxide and Catalyst Synthesis Method.
    Jadhav AL; Malkar RS; Yadav GD
    ACS Omega; 2020 Feb; 5(5):2088-2096. PubMed ID: 32064369
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sustainable PET Waste Recycling: Labels from PET Water Bottles Used as a Catalyst for the Chemical Recycling of the Same Bottles.
    Enayati M; Mohammadi S; Bouldo MG
    ACS Sustain Chem Eng; 2023 Nov; 11(46):16618-16626. PubMed ID: 38028403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical Recycling of Used PET by Glycolysis Using Niobia-Based Catalysts.
    Shirazimoghaddam S; Amin I; Faria Albanese JA; Shiju NR
    ACS Eng Au; 2023 Feb; 3(1):37-44. PubMed ID: 36820227
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical scavenging of post-consumed clothes.
    Barot AA; Sinha VK
    Waste Manag; 2015 Dec; 46():86-93. PubMed ID: 26383902
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    Yadav G; Ahmaruzzaman M
    ACS Omega; 2022 Aug; 7(32):28534-28544. PubMed ID: 35990478
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New Task-Specific and Reusable ZIF-like Grafted H
    Narenji-Sani F; Tayebee R; Chahkandi M
    ACS Omega; 2020 May; 5(17):9999-10010. PubMed ID: 32391488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Viability of Glycolysis for the Chemical Recycling of Highly Coloured and Multi-Layered Actual PET Wastes.
    Asueta A; Arnaiz S; Miguel-Fernández R; Leivar J; Amundarain I; Aramburu B; Gutiérrez-Ortiz JI; López-Fonseca R
    Polymers (Basel); 2023 Oct; 15(20):. PubMed ID: 37896440
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Organoselenium functionalized SBA-15 as a new catalyst for the cyanide-free conversion of oximes to nitriles.
    Bigdelo M; Nemati F; Rangraz Y
    BMC Chem; 2022 Nov; 16(1):99. PubMed ID: 36414989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.