BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 33374225)

  • 1. Secretion of Iron(III)-Reducing Metabolites during Protein Acquisition by the Ectomycorrhizal Fungus
    Shah F; Gressler M; Nehzati S; Op De Beeck M; Gentile L; Hoffmeister D; Persson P; Tunlid A
    Microorganisms; 2020 Dec; 9(1):. PubMed ID: 33374225
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Involutin is an Fe3+ reductant secreted by the ectomycorrhizal fungus Paxillus involutus during Fenton-based decomposition of organic matter.
    Shah F; Schwenk D; Nicolás C; Persson P; Hoffmeister D; Tunlid A
    Appl Environ Microbiol; 2015 Dec; 81(24):8427-33. PubMed ID: 26431968
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fenton reaction facilitates organic nitrogen acquisition by an ectomycorrhizal fungus.
    Op De Beeck M; Troein C; Peterson C; Persson P; Tunlid A
    New Phytol; 2018 Apr; 218(1):335-343. PubMed ID: 29297591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of Ammonium on Formation of Mineral-Associated Organic Carbon by an Ectomycorrhizal Fungus.
    Wang T; Tian Z; Tunlid A; Persson P
    Appl Environ Microbiol; 2019 May; 85(10):. PubMed ID: 30877120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitrogen acquisition from mineral-associated proteins by an ectomycorrhizal fungus.
    Wang T; Tian Z; Tunlid A; Persson P
    New Phytol; 2020 Oct; 228(2):697-711. PubMed ID: 32279319
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three Redundant Synthetases Secure Redox-Active Pigment Production in the Basidiomycete Paxillus involutus.
    Braesel J; Götze S; Shah F; Heine D; Tauber J; Hertweck C; Tunlid A; Stallforth P; Hoffmeister D
    Chem Biol; 2015 Oct; 22(10):1325-34. PubMed ID: 26496685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A widespread mechanism in ectomycorrhizal fungi to access nitrogen from mineral-associated proteins.
    Wang T; Persson P; Tunlid A
    Environ Microbiol; 2021 Oct; 23(10):5837-5849. PubMed ID: 33891367
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variation in host specificity and gene content in strains from genetically isolated lineages of the ectomycorrhizal fungus Paxillus involutus s. lat.
    Hedh J; Johansson T; Tunlid A
    Mycorrhiza; 2009 Oct; 19(8):549-558. PubMed ID: 19452174
    [TBL] [Abstract][Full Text] [Related]  

  • 9. First evidences that the ectomycorrhizal fungus Paxillus involutus mobilizes nitrogen and carbon from saprotrophic fungus necromass.
    Akroume E; Maillard F; Bach C; Hossann C; Brechet C; Angeli N; Zeller B; Saint-André L; Buée M
    Environ Microbiol; 2019 Jan; 21(1):197-208. PubMed ID: 30307107
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphate availability and ectomycorrhizal symbiosis with Pinus sylvestris have independent effects on the Paxillus involutus transcriptome.
    Paparokidou C; Leake JR; Beerling DJ; Rolfe SA
    Mycorrhiza; 2021 Jan; 31(1):69-83. PubMed ID: 33200348
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The time-course of disease suppression and antibiosis by the ectomycorrhizal fungus Paxillus involutus.
    Duchesne LC; Peterson RL; Ellis BE
    New Phytol; 1989 Apr; 111(4):693-698. PubMed ID: 33874068
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple gene genealogies and species recognition in the ectomycorrhizal fungus Paxillus involutus.
    Hedh J; Samson P; Erland S; Tunlid A
    Mycol Res; 2008 Aug; 112(Pt 8):965-75. PubMed ID: 18554888
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitrous oxide production by the ectomycorrhizal fungi Paxillus involutus and Tylospora fibrillosa.
    Prendergast-Miller MT; Baggs EM; Johnson D
    FEMS Microbiol Lett; 2011 Mar; 316(1):31-5. PubMed ID: 21204923
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ammonium and methylamine transport by the ectomycorrhizal fungus Paxillus involutus and ectomycorrhizas.
    Javelle A; Chalot M; Söderström B; Botton B
    FEMS Microbiol Ecol; 1999 Dec; 30(4):355-366. PubMed ID: 10568844
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel 2,5-Diarylcyclopentenone Derivatives from the Wild Edible Mushroom
    Lv JH; Yao L; Zhang JX; Wang LA; Zhang J; Wang YP; Xiao SY; Li CT; Li Y
    J Agric Food Chem; 2021 May; 69(17):5040-5048. PubMed ID: 33886290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Zinc phosphate transformations by the Paxillus involutus/pine ectomycorrhizal association.
    Fomina M; Charnock JM; Hillier S; Alexander IJ; Gadd GM
    Microb Ecol; 2006 Aug; 52(2):322-33. PubMed ID: 16710792
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The carbon starvation response of the ectomycorrhizal fungus Paxillus involutus.
    Ellström M; Shah F; Johansson T; Ahrén D; Persson P; Tunlid A
    FEMS Microbiol Ecol; 2015 Apr; 91(4):. PubMed ID: 25778509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Screening for rapidly evolving genes in the ectomycorrhizal fungus Paxillus involutus using cDNA microarrays.
    Le Quéré A; Eriksen KA; Rajashekar B; Schützendübel A; Canbäck B; Johansson T; Tunlid A
    Mol Ecol; 2006 Feb; 15(2):535-50. PubMed ID: 16448419
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endogenous polyamine content and metabolism in the ectomycorrhizal fungus Paxillus involutus.
    Fornalé S; Sarjala T; Bagni N
    New Phytol; 1999 Sep; 143(3):581-587. PubMed ID: 33862898
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pathway for the Production of Hydroxyl Radicals during the Microbially Mediated Redox Transformation of Iron (Oxyhydr)oxides.
    Han R; Lv J; Huang Z; Zhang S; Zhang S
    Environ Sci Technol; 2020 Jan; 54(2):902-910. PubMed ID: 31886656
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.