These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 33374279)
1. Composite Nanostructure of Manganese Cluster and CHA-Type Silicoaluminaphosphates: Enhanced Catalytic Performance in Dimethylether to Light Olefins Conversion. Ping G; Zheng K; Fang Q; Li G Nanomaterials (Basel); 2020 Dec; 11(1):. PubMed ID: 33374279 [TBL] [Abstract][Full Text] [Related]
2. Catalytic Longevity of Hierarchical SAPO-34/AlMCM-41 Nanocomposite Molecular Sieve In Methanol-to-Olefins Process. Roohollahi H; Halladj R; Askari S Comb Chem High Throughput Screen; 2021; 24(4):521-533. PubMed ID: 32342811 [TBL] [Abstract][Full Text] [Related]
3. Synthesis of mesoporous SAPO-34 zeolite from mesoporous silica materials for methanol to light olefins. Kang EA; Kim TW; Chae HJ; Kim M; Jeong KE; Kim JW; Kim CU; Jeong SY J Nanosci Nanotechnol; 2013 Nov; 13(11):7498-503. PubMed ID: 24245281 [TBL] [Abstract][Full Text] [Related]
4. The promotion effect of manganese on Cu/SAPO for selective catalytic reduction of NO Pang C; Zhuo Y; Weng Q; Zhu Z RSC Adv; 2018 Feb; 8(11):6110-6119. PubMed ID: 35539627 [TBL] [Abstract][Full Text] [Related]
5. Utilization of SAPO-18 or SAPO-35 in the bifunctional catalyst for the direct conversion of syngas to light olefins. Huang Y; Ma H; Xu Z; Qian W; Zhang H; Ying W RSC Adv; 2021 Apr; 11(23):13876-13884. PubMed ID: 35423941 [TBL] [Abstract][Full Text] [Related]
6. Comparative Synthesis and Characterization of Nanostructured SAPO-34 Using TEA and Morpholine: Effect of Mono vs. Dual Template on Catalytic Properties and Performance toward Methanol to Light Olefins. Aghamohammadi S; Haghighi M; Sadeghpour P; Souri T Comb Chem High Throughput Screen; 2021; 24(4):509-520. PubMed ID: 32928082 [TBL] [Abstract][Full Text] [Related]
7. Manganese-rich MnSAPO-34 molecular sieves as an efficient catalyst for the selective catalytic reduction of NO Yu C; Chen F; Dong L; Liu X; Huang B; Wang X; Zhong S Environ Sci Pollut Res Int; 2017 Mar; 24(8):7499-7510. PubMed ID: 28116621 [TBL] [Abstract][Full Text] [Related]
8. The Effect of Iron Content on the Ammonia Selective Catalytic Reduction Reaction (NH Li Z; Chen G; Shao Z; Zhang H; Guo X Int J Environ Res Public Health; 2022 Nov; 19(22):. PubMed ID: 36429468 [TBL] [Abstract][Full Text] [Related]
9. Catalytically active and hierarchically porous SAPO-11 zeolite synthesized in the presence of polyhexamethylene biguanidine. Liu Y; Qu W; Chang W; Pan S; Tian Z; Meng X; Rigutto M; van der Made A; Zhao L; Zheng X; Xiao FS J Colloid Interface Sci; 2014 Mar; 418():193-9. PubMed ID: 24461835 [TBL] [Abstract][Full Text] [Related]
10. Stabilizing the framework of SAPO-34 zeolite toward long-term methanol-to-olefins conversion. Yang L; Wang C; Zhang L; Dai W; Chu Y; Xu J; Wu G; Gao M; Liu W; Xu Z; Wang P; Guan N; Dyballa M; Ye M; Deng F; Fan W; Li L Nat Commun; 2021 Aug; 12(1):4661. PubMed ID: 34341350 [TBL] [Abstract][Full Text] [Related]
11. Design Synthesis of Low-Silica SAPO-34 Nanocrystals by Constructing Isomorphous Core-Shell Structure: An Effective Catalyst for Improving Catalytic Performances in Methanol-to-Olefins Reaction. Wang Q; Dai W; Dai Y; Pan M; Liu Y; Zhang L; Zheng J; Liu X; Li R; Ma L; Wang H; Zong Y ACS Appl Mater Interfaces; 2024 Mar; 16(11):14308-14320. PubMed ID: 38456610 [TBL] [Abstract][Full Text] [Related]
12. Synthesis and kinetics investigation of meso-microporous Cu-SAPO-34 catalysts for the selective catalytic reduction of NO with ammonia. Liu J; Yu F; Liu J; Cui L; Zhao Z; Wei Y; Sun Q J Environ Sci (China); 2016 Oct; 48():45-58. PubMed ID: 27745671 [TBL] [Abstract][Full Text] [Related]
13. Life Time Improvement of Hierarchically Structured SAPO-34 Nanocatalyst in MTO Reaction Yazdanpanah R; Moradiyan E; Halladj R; Askari S Comb Chem High Throughput Screen; 2021; 24(4):534-545. PubMed ID: 32342812 [TBL] [Abstract][Full Text] [Related]
14. Further Studies on How the Nature of Zeolite Cavities That Are Bounded by Small Pores Influences the Conversion of Methanol to Light Olefins. Kang JH; Walter R; Xie D; Davis T; Chen CY; Davis ME; Zones SI Chemphyschem; 2018 Feb; 19(4):412-419. PubMed ID: 29211929 [TBL] [Abstract][Full Text] [Related]
15. Ultrasound-assistant preparation of Cu-SAPO-34 nanocatalyst for selective catalytic reduction of NO by NH3. Panahi PN; Niaei A; Salari D; Mousavi SM; Delahay G J Environ Sci (China); 2015 Sep; 35():135-143. PubMed ID: 26354702 [TBL] [Abstract][Full Text] [Related]
16. Low-temperature SCR of NO Yu C; Dong L; Chen F; Liu X; Huang B Environ Technol; 2017 Apr; 38(8):1030-1042. PubMed ID: 27494642 [TBL] [Abstract][Full Text] [Related]
17. Effective synergies in indium oxide loaded with zirconia mixed with silicoaluminophosphate molecular sieve number 34 catalysts for carbon dioxide hydrogenation to lower olefins. Xie T; Ding J; Shang X; Zhang X; Zhong Q J Colloid Interface Sci; 2023 Apr; 635():148-158. PubMed ID: 36584615 [TBL] [Abstract][Full Text] [Related]
18. Methanol promoted naphtha catalytic pyrolysis to light olefins on Zn-modified high-silicon HZSM-5 zeolite catalysts. Cheng QT; Shen BX; Sun H; Zhao JG; Liu JC RSC Adv; 2019 Jul; 9(36):20818-20828. PubMed ID: 35515572 [TBL] [Abstract][Full Text] [Related]
19. Cu/SAPO-34 prepared by a facile ball milling method for enhanced catalytic performance in the selective catalytic reduction of NO Chang H; Qin X; Ma L; Zhang T; Li J Phys Chem Chem Phys; 2019 Oct; 21(39):22113-22120. PubMed ID: 31570907 [TBL] [Abstract][Full Text] [Related]
20. Controlled Nanostructure of Zeolite Crystal Encapsulating FeMnK Catalysts Targeting Light Olefins from Syngas. Zhu C; Zhang M; Huang C; Han Y; Fang K ACS Appl Mater Interfaces; 2020 Dec; 12(52):57950-57962. PubMed ID: 33337154 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]