BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 33374414)

  • 1. The Prediction of Calorific Value of Carbonized Solid Fuel Produced from Refuse-Derived Fuel in the Low-Temperature Pyrolysis in CO
    Syguła E; Świechowski K; Stępień P; Koziel JA; Białowiec A
    Materials (Basel); 2020 Dec; 14(1):. PubMed ID: 33374414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lab-Scale Study of Temperature and Duration Effects on Carbonized Solid Fuels Properties Produced from Municipal Solid Waste Components.
    Świechowski K; Stępień P; Syguła E; Koziel JA; Białowiec A
    Materials (Basel); 2021 Mar; 14(5):. PubMed ID: 33802515
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The RDF/SRF torrefaction: An effect of temperature on characterization of the product - Carbonized Refuse Derived Fuel.
    Białowiec A; Pulka J; Stępień P; Manczarski P; Gołaszewski J
    Waste Manag; 2017 Dec; 70():91-100. PubMed ID: 28951151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of products obtained from pyrolysis and steam gasification of wood waste, RDF, and RPF.
    Hwang IH; Kobayashi J; Kawamoto K
    Waste Manag; 2014 Feb; 34(2):402-10. PubMed ID: 24246576
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical and experimental analysis of pyrolysis process of RDF containing a high percentage of plastic waste.
    Zajemska M; Magdziarz A; Iwaszko J; Skrzyniarz M; Poskart A
    Fuel (Lond); 2022 Jul; 320():123981. PubMed ID: 36000017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pyrolysis and Gasification of a Real Refuse-Derived Fuel (RDF): The Potential Use of the Products under a Circular Economy Vision.
    Alfè M; Gargiulo V; Porto M; Migliaccio R; Le Pera A; Sellaro M; Pellegrino C; Abe AA; Urciuolo M; Caputo P; Calandra P; Loise V; Rossi CO; Ruoppolo G
    Molecules; 2022 Nov; 27(23):. PubMed ID: 36500207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficiency of municipal packaging waste recovery chain and suitability of separated residual waste fractions for use in alternative fuels production.
    Tomić T; Kremer I; Vecchio Ciprioti S; Schneider DR
    J Environ Manage; 2022 Nov; 322():116056. PubMed ID: 36070647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbonized Solid Fuel Production from Polylactic Acid and Paper Waste Due to Torrefaction.
    Świechowski K; Zafiu C; Białowiec A
    Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Processing and properties of a solid energy fuel from municipal solid waste (MSW) and recycled plastics.
    Gug J; Cacciola D; Sobkowicz MJ
    Waste Manag; 2015 Jan; 35():283-92. PubMed ID: 25453320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recovery, separation and production of fuel, plastic and aluminum from the Tetra PAK waste to hydrothermal and pyrolysis processes.
    Muñoz-Batista MJ; Blázquez G; Franco JF; Calero M; Martín-Lara MA
    Waste Manag; 2022 Jan; 137():179-189. PubMed ID: 34794036
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytic gasification of refuse-derived fuel in a two-stage laboratory scale pyrolysis/gasification unit with catalyst based on clay minerals.
    Šuhaj P; Haydary J; Husár J; Steltenpohl P; Šupa I
    Waste Manag; 2019 Feb; 85():1-10. PubMed ID: 30803562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Char from the co-pyrolysis of Eucalyptus wood and low-density polyethylene for use as high-quality fuel: Influence of process parameters.
    Samal B; Vanapalli KR; Dubey BK; Bhattacharya J; Chandra S; Medha I
    Sci Total Environ; 2021 Nov; 794():148723. PubMed ID: 34217075
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The application of SRF vs. RDF classification and specifications to the material flows of two mechanical-biological treatment plants of Rome: Comparison and implications.
    Di Lonardo MC; Franzese M; Costa G; Gavasci R; Lombardi F
    Waste Manag; 2016 Jan; 47(Pt B):195-205. PubMed ID: 26243051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fermentation-pyrolysis of fibre waste from a paper recycling mill for the production of fuel products.
    Brown LJ; Collard FX; Gottumukkala LD; Görgens J
    Waste Manag; 2021 Feb; 120():364-372. PubMed ID: 33340818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal degradation of waste plastics under non-sweeping atmosphere: Part 1: Effect of temperature, product optimization, and degradation mechanism.
    Singh RK; Ruj B; Sadhukhan AK; Gupta P
    J Environ Manage; 2019 Jun; 239():395-406. PubMed ID: 30928634
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermogravimetric and calorimetric characteristics during co-pyrolysis of municipal solid waste components.
    Ansah E; Wang L; Shahbazi A
    Waste Manag; 2016 Oct; 56():196-206. PubMed ID: 27324928
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of fuel value and combustion characteristics of two different RDF samples.
    Sever Akdağ A; Atımtay A; Sanin FD
    Waste Manag; 2016 Jan; 47(Pt B):217-24. PubMed ID: 26360232
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of an industrial solid waste processing line to produce refuse-derived fuel.
    Infiesta LR; Ferreira CRN; Trovó AG; Borges VL; Carvalho SR
    J Environ Manage; 2019 Apr; 236():715-719. PubMed ID: 30772728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Municipal solid waste landfill age and refuse-derived fuel.
    Chiou IJ; Chen CH
    Waste Manag Res; 2021 Apr; 39(4):601-606. PubMed ID: 33028175
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimizing refuse-derived fuel production from scheduled wastes through Aspen plus simulation.
    Zubir MA; Kamyab H; Vasseghian Y; Hashim H; Zhi OM; Abdullah SR; Yusuf M; Kapran B; Kori AH; Nasri NS; Hoang HY
    Environ Res; 2024 Jun; 251(Pt 2):118617. PubMed ID: 38467362
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.