These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 33374467)
1. An Electrokinetically-Driven Microchip for Rapid Entrapment and Detection of Nanovesicles. Shi L; Esfandiari L Micromachines (Basel); 2020 Dec; 12(1):. PubMed ID: 33374467 [TBL] [Abstract][Full Text] [Related]
2. A Label-Free Electrical Impedance Spectroscopy for Detection of Clusters of Extracellular Vesicles Based on Their Unique Dielectric Properties. Zhang Y; Murakami K; Borra VJ; Ozen MO; Demirci U; Nakamura T; Esfandiari L Biosensors (Basel); 2022 Feb; 12(2):. PubMed ID: 35200364 [TBL] [Abstract][Full Text] [Related]
3. A label-free and low-power microelectronic impedance spectroscopy for characterization of exosomes. Shi L; Esfandiari L PLoS One; 2022; 17(7):e0270844. PubMed ID: 35802670 [TBL] [Abstract][Full Text] [Related]
4. A low voltage nanopipette dielectrophoretic device for rapid entrapment of nanoparticles and exosomes extracted from plasma of healthy donors. Shi L; Rana A; Esfandiari L Sci Rep; 2018 Apr; 8(1):6751. PubMed ID: 29712935 [TBL] [Abstract][Full Text] [Related]
5. Dielectrophoresis assisted loading and unloading of microwells for impedance spectroscopy. Mansoorifar A; Koklu A; Sabuncu AC; Beskok A Electrophoresis; 2017 Jun; 38(11):1466-1474. PubMed ID: 28256738 [TBL] [Abstract][Full Text] [Related]
6. Sample concentration and impedance detection on a microfluidic polymer chip. Sabounchi P; Morales AM; Ponce P; Lee LP; Simmons BA; Davalos RV Biomed Microdevices; 2008 Oct; 10(5):661-70. PubMed ID: 18484178 [TBL] [Abstract][Full Text] [Related]
8. Impedance detection integrated with dielectrophoresis enrichment platform for lung circulating tumor cells in a microfluidic channel. Nguyen NV; Jen CP Biosens Bioelectron; 2018 Dec; 121():10-18. PubMed ID: 30189335 [TBL] [Abstract][Full Text] [Related]
9. Numerical Investigation of a Novel Wiring Scheme Enabling Simple and Accurate Impedance Cytometry. Caselli F; Reale R; Nodargi NA; Bisegna P Micromachines (Basel); 2017 Sep; 8(9):. PubMed ID: 30400471 [TBL] [Abstract][Full Text] [Related]
10. Microfluidic chip with integrated electrical cell-impedance sensing for monitoring single cancer cell migration in three-dimensional matrixes. Nguyen TA; Yin TI; Reyes D; Urban GA Anal Chem; 2013 Nov; 85(22):11068-76. PubMed ID: 24117341 [TBL] [Abstract][Full Text] [Related]
11. Isolation of exosomes from whole blood by integrating acoustics and microfluidics. Wu M; Ouyang Y; Wang Z; Zhang R; Huang PH; Chen C; Li H; Li P; Quinn D; Dao M; Suresh S; Sadovsky Y; Huang TJ Proc Natl Acad Sci U S A; 2017 Oct; 114(40):10584-10589. PubMed ID: 28923936 [TBL] [Abstract][Full Text] [Related]
12. Analysis of biological particles using dielectrophoresis and impedance measurement. Milner KR; Brown AP; Betts WB; Goodall DM; Allsopp DW Biomed Sci Instrum; 1997; 34():157-62. PubMed ID: 9603031 [TBL] [Abstract][Full Text] [Related]
13. Microfluidic Arrayed Lab-On-A-Chip for Electrochemical Capacitive Detection of DNA Hybridization Events. Ben-Yoav H; Dykstra PH; Bentley WE; Ghodssi R Methods Mol Biol; 2017; 1572():71-88. PubMed ID: 28299682 [TBL] [Abstract][Full Text] [Related]
15. 3D Insulator-based dielectrophoresis using DC-biased, AC electric fields for selective bacterial trapping. Zellner P; Shake T; Hosseini Y; Nakidde D; Riquelme MV; Sahari A; Pruden A; Behkam B; Agah M Electrophoresis; 2015 Jan; 36(2):277-83. PubMed ID: 25257669 [TBL] [Abstract][Full Text] [Related]
16. Label-free, high-throughput, electrical detection of cells in droplets. Kemna EW; Segerink LI; Wolbers F; Vermes I; van den Berg A Analyst; 2013 Aug; 138(16):4585-92. PubMed ID: 23748871 [TBL] [Abstract][Full Text] [Related]
17. Detection of exosomes by ZnO nanowires coated three-dimensional scaffold chip device. Chen Z; Cheng SB; Cao P; Qiu QF; Chen Y; Xie M; Xu Y; Huang WH Biosens Bioelectron; 2018 Dec; 122():211-216. PubMed ID: 30265971 [TBL] [Abstract][Full Text] [Related]
18. Nanoparticle Counting by Microscopic Digital Detection: Selective Quantitative Analysis of Exosomes via Surface-Anchored Nucleic Acid Amplification. Tian Q; He C; Liu G; Zhao Y; Hui L; Mu Y; Tang R; Luo Y; Zheng S; Wang B Anal Chem; 2018 Jun; 90(11):6556-6562. PubMed ID: 29715009 [TBL] [Abstract][Full Text] [Related]
19. Exosome separation using microfluidic systems: size-based, immunoaffinity-based and dynamic methodologies. Yang F; Liao X; Tian Y; Li G Biotechnol J; 2017 Apr; 12(4):. PubMed ID: 28166394 [TBL] [Abstract][Full Text] [Related]
20. Rapid purification and multiparametric characterization of circulating small extracellular vesicles utilizing a label-free lab-on-a-chip device. Sharma M; Sheth M; Poling HM; Kuhnell D; Langevin SM; Esfandiari L Sci Rep; 2023 Oct; 13(1):18293. PubMed ID: 37880299 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]