These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 33374497)

  • 1. Thermochemical Performance Analysis of the Steam Reforming of Methane in a Fixed Bed Membrane Reformer: A Modelling and Simulation Study.
    de Medeiros JPF; da Fonseca Dias V; da Silva JM; da Silva JD
    Membranes (Basel); 2020 Dec; 11(1):. PubMed ID: 33374497
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design, optimization and application of reformer in a marine natural gas engine: A numerical and experimental study.
    Huang Y; Zhang Z; Zhang Y; Wei W; Zhou L; Li G; Xu W; Zheng Y; Song W
    Sci Total Environ; 2023 Sep; 892():164542. PubMed ID: 37271386
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of Pd-Ag Membrane Reactors for Low-Temperature Dry Reforming of Biogas-A Simulation Study.
    Albano M; Madeira LM; Miguel CV
    Membranes (Basel); 2023 Jun; 13(7):. PubMed ID: 37504996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental Study on Dry Reforming of Biogas for Syngas Production over Ni-Based Catalysts.
    Chein R; Yang Z
    ACS Omega; 2019 Dec; 4(25):20911-20922. PubMed ID: 31867481
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermodynamic modelling and optimization of oxy-reforming and oxy-steam reforming of biogas by RSM.
    Özcan MD; Özcan O; Akın AN
    Environ Technol; 2020 Jan; 41(1):14-28. PubMed ID: 31264942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics for Steam and CO2 Reforming of Methane Over Ni/La/Al2O3 Catalyst.
    Park MH; Choi BK; Park YH; Moon DJ; Park NC; Kim YC
    J Nanosci Nanotechnol; 2015 Jul; 15(7):5255-8. PubMed ID: 26373118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Swiss-Roll-Type Methanol Mini-Steam Reformer for Hydrogen Generation with High Efficiency and Long-Term Durability.
    Tseng FG; Chiu WC; Huang PJ
    Micromachines (Basel); 2023 Sep; 14(10):. PubMed ID: 37893282
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogen production by the steam reforming of synthetic biogas in atmospheric-pressure microwave (915 MHz) plasma.
    Hrycak B; Mizeraczyk J; Czylkowski D; Dors M; Budnarowska M; Jasiński M
    Sci Rep; 2023 Feb; 13(1):2204. PubMed ID: 36750627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An On-Board Pure H
    Parvasi P; Mohammad Jokar S; Basile A; Iulianelli A
    Membranes (Basel); 2020 Jul; 10(7):. PubMed ID: 32708235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Emerging trends in hydrogen and synfuel generation: a state-of-the-art review.
    Alhassan M; Jalil AA; Owgi AHK; Hamid MYS; Bahari MB; Van Tran T; Nabgan W; Hatta AH; Khusnun NFB; Amusa AA; Nyakuma BB
    Environ Sci Pollut Res Int; 2024 Jun; 31(30):42640-42671. PubMed ID: 38902444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facile CO
    Warren KJ; Hill CM; Carrillo RJ; Scheffe JR
    Phys Chem Chem Phys; 2020 Apr; 22(16):8545-8556. PubMed ID: 32253404
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomass gasification for hydrogen rich gas in a decoupled triple bed gasifier with olivine and NiO/olivine.
    Tursun Y; Xu S; Abulikemu A; Dilinuer T
    Bioresour Technol; 2019 Jan; 272():241-248. PubMed ID: 30347349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of flexible micro temperature sensor in oxidative steam reforming by a methanol micro reformer.
    Lee CY; Lee SJ; Shen CC; Yeh CT; Chang CC; Lo YM
    Sensors (Basel); 2011; 11(2):2246-56. PubMed ID: 22319407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Bimetallic Ni-Cr Catalysts for Steam-CO2 Reforming of Methane at High Pressure.
    Choi BK; Park YH; Moon DJ; Park NC; Kim YC
    J Nanosci Nanotechnol; 2015 Jul; 15(7):5259-63. PubMed ID: 26373119
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Review of the CFD Modeling of Hydrogen Production in Catalytic Steam Reforming Reactors.
    Ghasem N
    Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A thermo-photo hybrid process for steam reforming of methane: highly efficient visible light photocatalysis.
    Han B; Wei W; Li M; Sun K; Hu YH
    Chem Commun (Camb); 2019 Jul; 55(54):7816-7819. PubMed ID: 31215574
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogen Production via Steam Reforming: A Critical Analysis of MR and RMM Technologies.
    Franchi G; Capocelli M; De Falco M; Piemonte V; Barba D
    Membranes (Basel); 2020 Jan; 10(1):. PubMed ID: 31947783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation and characterization of Ni-based perovskite catalyst for steam CO2 reforming of methane.
    Yang EH; Kim SW; Ahn BS; Moon DJ
    J Nanosci Nanotechnol; 2013 Jun; 13(6):4334-7. PubMed ID: 23862497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One-dimensional modeling of heterogeneous catalytic chemical looping steam methane reforming in an adiabatic packed bed reactor.
    Qayyum H; Cheema II; Abdullah M; Amin M; Khan IA; Lee EJ; Lee KH
    Front Chem; 2023; 11():1295455. PubMed ID: 38053671
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dry Reforming of Methane in a Gliding Arc Plasmatron: Towards a Better Understanding of the Plasma Chemistry.
    Cleiren E; Heijkers S; Ramakers M; Bogaerts A
    ChemSusChem; 2017 Oct; 10(20):4025-4036. PubMed ID: 28834403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.