These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 33374497)

  • 21. Dry Reforming of Methane in a Gliding Arc Plasmatron: Towards a Better Understanding of the Plasma Chemistry.
    Cleiren E; Heijkers S; Ramakers M; Bogaerts A
    ChemSusChem; 2017 Oct; 10(20):4025-4036. PubMed ID: 28834403
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Efficient utilization of greenhouse gas in a gas-to-liquids process combined with carbon dioxide reforming of methane.
    Ha KS; Bae JW; Woo KJ; Jun KW
    Environ Sci Technol; 2010 Feb; 44(4):1412-7. PubMed ID: 20078033
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A MEMS methanol reformer heated by decomposition of hydrogen peroxide.
    Kim T; Hwang JS; Kwon S
    Lab Chip; 2007 Jul; 7(7):835-41. PubMed ID: 17594001
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Production of hydrogen-rich gas from methane by thermal plasma reform.
    Chun YN; Kim SC
    J Air Waste Manag Assoc; 2007 Dec; 57(12):1447-51. PubMed ID: 18200929
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Preparation, Characterization, and Activity of Pd/PSS-Modified Membranes in the Low Temperature Dry Reforming of Methane with and without Addition of Extra Steam.
    Mateos-Pedrero C; Soria MA; Guerrero-Ruíz A; Rodríguez-Ramos I
    Membranes (Basel); 2021 Jul; 11(7):. PubMed ID: 34357168
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Understanding the Impact of Hydrogen Activation by SrCe
    Cheng S; Oh SC; Sakbodin M; Qiu L; Diao Y; Liu D
    Front Chem; 2021; 9():806464. PubMed ID: 35083196
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Model-Based Quality, Exergy, and Economic Analysis of Fluidized Bed Membrane Reactors.
    Nafees T; Bhatti AA; Jadoon UK; Ahmad F; Ahmad I; Kano M; Menezes BC; Ahsan M; Syed NUH
    Membranes (Basel); 2021 Oct; 11(10):. PubMed ID: 34677531
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fe-rich biomass derived char for microwave-assisted methane reforming with carbon dioxide.
    Li L; Yan K; Chen J; Feng T; Wang F; Wang J; Song Z; Ma C
    Sci Total Environ; 2019 Mar; 657():1357-1367. PubMed ID: 30677902
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mo-based catalysts for CH
    Li K; Zhu Y; Wang Z; Chen D; Wu W; Luo Y; He D
    Environ Sci Pollut Res Int; 2023 Jun; 30(27):70884-70896. PubMed ID: 37160514
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Using greenhouse gases in the synthesis gas production processes: Thermodynamic conditions.
    Szczygieł J; Chojnacka K; Skrzypczak D; Izydorczyk G; Moustakas K; Kułażyński M
    J Environ Manage; 2023 Jan; 325(Pt A):116463. PubMed ID: 36270132
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Single Step Bi-reforming and Oxidative Bi-reforming of Methane (Natural Gas) with Steam and Carbon Dioxide to Metgas (CO-2H2) for Methanol Synthesis: Self-Sufficient Effective and Exclusive Oxygenation of Methane to Methanol with Oxygen.
    Olah GA; Goeppert A; Czaun M; Mathew T; May RB; Prakash GK
    J Am Chem Soc; 2015 Jul; 137(27):8720-9. PubMed ID: 26086090
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modified Nano-Perovskite Catalysts for the Steam and CO2 Reforming of Methane.
    Park D; Moon DJ; Bae JW; Kim T
    J Nanosci Nanotechnol; 2015 Aug; 15(8):5889-92. PubMed ID: 26369166
    [TBL] [